Comparative study of Powder X-Ray Diffraction Analyses of Titanium Dioxide (TiO₂) Nanoparticles Synthesized by the Sol-Gel Method

Authors

  • Khyati Mody Department of Physics, Veer Narmad South Gujarat University, Surat-395007, Gujarat, India
  • I B Patel Department of Physics, Veer Narmad South Gujarat University, Surat-395007, Gujarat, India

DOI:

https://doi.org/10.61343/jcm.v3i01.71

Keywords:

Titanium Dioxide (TiO₂) nanoparticles, Sol-Gel Method, X-ray diffraction (XRD), Anatase Phase, Dislocation Density, Morphology Index, Specific Surface Area

Abstract

This study presents a comparative analysis of Powder X-ray Diffraction (XRD) data of various Titanium Dioxide (TiO₂) nanoparticle samples synthesized via the Sol-Gel method using Titanium (IV) isopropoxide as a precursor. Titanium Dioxide, known for its chemical inertness and environmental friendliness, is widely utilized in industries as a pigment and exists in three crystalline phases: anatase, rutile, and brookite. XRD analysis revealed that the synthesized nanoparticles exhibit pure anatase and anatase-rutile mixed phases. The particle sizes, ranging in nanometres, were influenced by varying precursor ratios and calcination temperatures. Additionally, this research evaluates critical characteristics such as specific surface area, dislocation density, and morphology index, providing insights into the structural and physical properties of the prepared nanoparticles.

References

A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.

https://doi.org/10.1038/238037a0.

C.H. Ao, S.C. Lee, Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner, Chem. Eng. Sci. 60 (2005) 103–109.

https://doi.org/10.1016/j.ces.2004.01.073.

Y. Paz, Application of TiO2 photocatalysis for air treatment: patents’ overview, Appl. Catal. B Environ. 99 (2010) 448-460.

https://doi.org/10.1016/j.apcatb. 2010.05.011.

M. Hussain, N. Russo, G. Saracco, Photocatalytic abatement of VOCs by novel op timized TiO2 nanoparticles, Chem. Eng. J. 166 (2011) 138–149. https://doi.org/10. 1016/j.cej.2010.10.040.

S. Miar Alipour, D. Friedmann, J. Scott, R. Amal, TiO2 /porous adsorbents: recent advances and novel applications, J. Hazard. Mater. 341 (2018) 404-423.

https://doi.org/10.1016/j.jhazmat.2017.07.070.

M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter 24 (2012) 195503.

https://doi.org/10.1088/0953-8984/24/19/195503.

B.L. Diffey, Sources and measurement of ultraviolet radiation, Methods 28 (2002) 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9.

W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, S.-H. Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett. 96 (2010). https://doi.org/10.1063/1.3430005 221901.

R. Long, N.J. English, Band gap engineering of double- cation-impurity-doped anatase-titania for visible-light photocatalysts: a hybrid density functional theory approach, Phys. Chem. Chem. Phys. 13 (2011) 13698–13703.

https://doi.org/10. 1039/C1CP21454C.

S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A 115 (2011) 13211–13241.

https://doi.org/10.1021/ jp204364a.

J. Godnjavec, J. Zabret, B. Znoj, S. Skale, N. Veronovski, P. Venturini, Investigation of surface modification of rutile TiO2 nanoparticles with SiO2/Al2O3 on the properties of polyacrylic composite coating, Prog. Org. Coat. 77 (2014) 47-52.

https://doi.org/10.1016/j.porgcoat.2013.08.001.

S. Ke, X. Cheng, Q. Wang, Y. Wang, Z. Pan, Preparation of a photocatalytic TiO2 / ZnTiO3 coating on glazed ceramic tiles, Ceram. Int. 40 (2014) 8891-8895.

https://doi.org/10.1016/j.ceramint.2014.01.027.

R. Phienluphon, K. Pinkaew, G. Yang, J. Li, Q. Wei, Y. Yoneyama, T. Vitidsant, N. Tsubaki, Designing core (Cu/ZnO/Al2O3)–shell (SAPO-11) zeolite capsule cata lyst with a facile physical way for dimethyl ether direct synthesis from syngas, Chem. Eng. J. 270 (2015) 605–611. https://doi.org/10.1016/j.cej.2015.02.071.

Z. Li, Y. Hou, B. Ma, X. Wu, Z. Xing, K. Li, Super-hydrophilic porous TiO2 -ZnO composite thin films without light irradiation, Environ. Prog. Sustain. Energy 35 (2016) 1121–1124.

https://doi.org/10.1002/ep.12308.

Y. Yao, G. Li, S. Ciston, R.M. Lueptow, K.A. Gray, Photoreactive TiO2 /carbon na notube composites: synthesis and reactivity, Environ. Sci. Technol. 42 (2008) 4952–4957.

https://doi.org/10.1021/es800191n.

Y.-J. Xu, Y. Zhuang, X. Fu, New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange, J. Phys. Chem. C 114 (2010) 2669–2676.

https://doi.org/10.1021/jp909855p.

Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Res. 3 (2010) 701–705, https://doi.org/10.1007/s12274-010-0033-5.

Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 −graphene truly different from other TiO2 −carbon composite materials? ACS Nano 4 (2010) 7303–7314.

https://doi.org/10.1021/nn1024219.

J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombina tion in photocatalytic applications, Adv. Funct. Mater. 20 (2010) 4175–4181. https://doi.org/10.1002/adfm.201001391.

K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene– TiO2 composites with enhanced photocatalytic activity, New J. Chem. 35 (2011) 353–359.

https://doi.org/10.1039/C0NJ00623H.

J. Auvinen, L. Wirtanen, The influence of photocatalytic interior paints on indoor air quality, Atmos. Environ. 42 (2008) 4101–4112. https://doi.org/10.1016/j.atmosenv.2008.01.031.

M. Nuño, R.J. Ball, C.R. Bowen, Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry: study of photoreactions by mass spec trometry, J. Mass Spectrom. 49 (2014) 716–726.

https://doi.org/10.1002/jms. 3396.

M. Nuño, R.J. Ball, C.R. Bowen, R. Kurchania, G.D. Sharma, Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings, J. Mater. Sci. 50 (2015) 4822–4835. https://doi.org/10.1007/s10853-015-9022-0.

M. Nuño, G.L. Pesce, C.R. Bowen, P. Xenophontos, R.J. Ball, Environmental per formance of nano-structured Ca(OH)2/ TiO2 photocatalytic coatings for buildings, Build. Environ. 92 (2015) 734-742. https://doi.org/10.1016/j.buildenv.2015.05. 028.

P. Wolkoff, G.D. Nielsen, Organic compounds in indoor air-their relevance for perceived indoor air quality? Atmos. Environ. 35 (2001) 4407-4417. https://doi.org/10.1016/S1352-2310(01)00244-8.

Downloads

Published

2025-03-25

How to Cite

1.
Mody K, I B Patel. Comparative study of Powder X-Ray Diffraction Analyses of Titanium Dioxide (TiO₂) Nanoparticles Synthesized by the Sol-Gel Method. J. Cond. Matt. [Internet]. 2025 Mar. 25 [cited 2025 Apr. 4];3(01):30-5. Available from: https://jcm.thecmrs.in/index.php/j/article/view/71

Issue

Section

Research Article

Categories