A review Synthesis and luminescence characterize of emitting phosphor of garnet structure with effect of heating time


  • Ganesh Vandile
  • D V Nandanwar R T M Nagpur University, Nagpur
  • A. K. Nandanwar J. M. Patel College, Bhandara, RTM Nagpur University




SEM, TEM, Structural Studies ERD, IR Spectrospoy, PL


In this review, we deal with the structural properties of the garnet family of phosphor materials activated with trivalent lanthanide ions in the nano-crystalline materials. The interest is devoted the important garnet hosts: structure and luminescence spectroscopy are presented and discussed with particular meanings given to the possibility of achieving efficiently luminescence from trivalent lanthanide ions at the nano-level and to the potential and predicted technological applications of this class of materials.

Author Biographies

D V Nandanwar, R T M Nagpur University, Nagpur


Department of Physics

Shri Mathuradas Mohota College of Science, Nagpur.

A. K. Nandanwar, J. M. Patel College, Bhandara, RTM Nagpur University

Assistant Professor and Head

Department of Physics

J. M. Patel College, Bhandara- 441904

RTM Nagpur University


F. Vetrone, J.C. Boyer, J.A. Capobianco, 2 (2003) 141.

P.A. Tanner, J. Nanosci. Nanotechnol. 5 (2005) 1455.

H.H. Yu, M.K. Wong, E.M. Ali, J.Y. Ying, Chem. Commun. (2008) 4912.

F. Wang, X. Liu, Chem. Soc. Rev. 38 (2009) 976.

Y. Mao, T. Tran, X. Guo, J.Y. Huang, C.K. Shih, K.L. Wang, J.P. Chang, Adv. Funct. Mater. 19 (2009) 748.

Nandanwar A K, Chaodhary D L, Kamde S N, Choudhary D S, Rewatkar K G. 29 (2020) 951.

J.E. Geusic, H.M. Marcos, L.G. van Uitert, Appl. Phys. Lett. 4 (1964) 182.

Nandanwar A. K., Meshram, N. S., Korde, V. B., Choudhary, D. S., & Rewatkar, K. G. 203 (201912.

G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, A. Yoshikawa, J. Opt. Soc. Am. B 25 (2008) 884.

B.I. Galagan, B.I. Denker, V.V. Osiko, S.E. Sverchkov, Quant. Electron. 37 (2007) 971.

Nandanwar A. K., Sarkar NN, Sahu DK, Choudhary DS, Rewatkar KG. 10 (2018) 22669.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, A.G. Petrosyan, J. Opt. Soc. Am. B 23 (2006) 676.

E. Mihóková, M. Nikl, J.A. Mareš, A. Beitlerová, A. Vedda, K. Nejezchleb, K. Blazˇek, C. D’Ambrosio, J. Lumin. 126 (2007) 77.

K. Kamada, T. Yanagida, K. Tsutsumi, Y. Usuki, M. Sato, H. Ogino, A. Novoselov, A. Yoshikawa, M. Kobayashi, S. Sugimoto, F. Saito, IEEE Trans. Nucl. Sci. 56 (2009) 570.

V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21 (2009) 2077 (and references cited therein).

N. Kijima, Y. Shimomura, T. Kurushima, H. Watanabe, S. Shimooka, M. Mikami, K. Uheda, J. Light Vis. Env. 32 (2008) 202.

A. Louchet, Y. Le Du, F. Bretenaker, T. Chaneliere, F. Goldfarb, I. Lorgere, J.-L. Le Gouet, O. Guillot-Noel, P. Goldner, Phys. Rev. B 77 (2008) 195110.

T. Katsumata, ICCAS 2008, International Conference on Control, Automation and Systems, 14–17 October, 2008, pp. 2748–2751.

G. Gowda, J. Mater. Sci. Lett. 5 (1986) 1029.

P. Vaqueiro, M.A. Lopez-Quintela, J. Mater. Chem. 8 (1998) 161.

M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, V. Huch, J. Mater. Chem. 9 (1999) 3069.

D. Hreniak, W. Strek, P. Mazur, Mater. Sci. 20 (2002) 39.

D. Hreniak, W. Strek, J. Alloys Compd. 341 (2002) 183.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii, J. Alloys Compd. 341 (2002) 220.

A.A. Kaminskii, K. Ueda, A.F. Konstantinova, H. Yagi, T. Yanagitani, A.V. Butashin, V.P. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, A. Shirokava, Crystallogr. Rep. 48 (2003) 868.

S. Fujita, A. Sakamoto, S. Tanabe, IEEE J. Sel. Topics Quant. Electron. 14 (2008) 1387.

H.-L. Li, X.-J. Liu, R.-J. Xie, G.-H. Zhou, N. Hirosaki, X.-P. Pu, L.-P. Huang, Jpn. J. Appl. Phys. 47 (2008) 1657.

D. Hreniak, M. Bettinelli, A. Speghini, A. Łukowiak, P. Głuchowski, R. Wiglusz, J. Nanosci. Nanotechnol. 9 (2009) 6315.

F. Vetrone, J.-C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, J. Phys. Chem. B 107 (2003) 10747.

J.A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini, M. Bettinelli, J. Phys. Chem. B 106 (2002) 1181.

J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Zambelli, M. Bettinelli, J. Lumin. 106 (2004) 263.

E.J. Cussen, Structure and ionic conductivity in lithium garnets, J. Mater. Chem. 20(2010) 5167–5173.

T. Hasegawa, Y. Abe, A. Koizumi, T. Ueda, K. Toda, M. Sato, “Bluish-white luminescence in rare-earth-free vanadate garnet phosphors: structural characterization of LiCa3MV3O12 (M = Zn and Mg)”, Inorg. Chem. 57 (2018) 857–866

S. Geller, Z. Krist. 125,1,(1967)

S. ABrahams and S. Geller, AC 11, (1958)437

“Combined Experimental and Computational Study of Ce-Doped La3Zr2Li7O12 Garnet Solid-State Electrolyte”, Bo Dong*, Stephen R. Yeandel, Pooja Goddard*, and Peter R. Slater* Chemistry of Materials 2020, 32, 1, 215-223

“Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12”, Alexander G. Squires, David O. Scanlon, and Benjamin J. Morgan* Chemistry of Materials 2020, 32, 5, 1876-1886

H. Luo, W.S. Fang, L. Fang, W. Li, C.C. Li, Y. Tang, “Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12 (A = Li, K) ceramics”, Ceram. Int. 42 (2016) 10506–10510.

H.C. Xiang, L. Fang, X.W. Jiang, C.C. Li, “Low-firing and microwave dielectric properties of Na2YMg2V3O12 ceramic”, Ceram. Int. 42 (2016) 3701–3705.

Y. Tang, X.W. Jiang, H.C. Xiang, C.C. Li, L. Fang, X.R. Xing, “Two novel low-firing Na2AMg2V3O12 (A = Nd, Sm) ceramics and their chemical compatibility with silver”, Ceram. Int. 43 (2017) 2892–2898

A.Ikesuea, Y.L.Aung, R.Yasuhara and Y.Iwamoto, “Giant Faraday rotation in heavily ce-doped YIG bulk ceramics”, J. Eur. Cer. Soc.y 40(2020)6073-6078.



How to Cite

Vandile G, Nandanwar D, Nandanwar A. A review Synthesis and luminescence characterize of emitting phosphor of garnet structure with effect of heating time. J. Cond. Matt. [Internet]. 2023 Dec. 1 [cited 2024 May 29];1(02):5-9. Available from: https://jcm.thecmrs.in/index.php/j/article/view/19