A First Principle investigation for Structural, Electronic and Mechanical Properties of α-Mg3N2
DOI:
https://doi.org/10.61343/jcm.v3i01.83Keywords:
Semiconductor, Electronic structure, LCAO method, Band structure, Elastic propertiesAbstract
In this research, the LCAO technique is employed to explore the structural, mechanical, as well as electronic characteristics of the α-Mg3N2 material. The study utilizes the GGA approach within the framework of Density Functional Theory (DFT) to optimize geometrical parameters and characterize the material's structural attributes. The findings indicate that α-Mg3N2 demonstrates semiconducting behavior, as inferred from its electronic properties. With an energy band gap aligning with the optimal range of the solar spectrum, α-Mg3N2 is identified as a potential candidate for photovoltaic applications. A comprehensive analysis of elastic properties, including bulk modulus, shear modulus, Young’s modulus, with Poisson’s ratio, has been conducted. Additionally, the anisotropic nature of Young’s modulus, linear compressibility has been evaluated via ELATE software, revealing the predetermined elastic anisotropy of the α-Mg3N2 compound.
References
S. R. Römer, T. Doerfler, P. Kroll, and W. Schnick, Phys. Stat. solidi (b) 246: 1604-1613 (2009). https://doi.org/10.1002/pssb.200945011.
J. K. Jian, G. Wang, C. Wang, W. X. Yuan, and X. L. Chen, J. crys. Growth 291: 72-76, (2006), https://doi.org/10.1016/j.jcrysgro.2006.03.016.
Y. Zhuang, F. Sun, L. Zhou, C. Jiang, J. Wang, S. Li, and S. Liao, Int. J. App. Cer. Tech. 21: 2273-2287 (2024), https://doi.org/10.1111/ijac.14665.
L. Govindasamy, Y. J. Park, J. W. Ko, J. W. Lee, M. H. Jin, K. Kumar, and H. N. Kim, J. Korean Cer. Soc. 61: 507-536 (2024),
https://doi.org/10.1007/s43207-024-00388-8.
A. E. Naclerio and P. R. Kidambi, Adv. Mater. 35: 2207374 (2023),
https://doi.org/10.1002/adma.202207374.
N. Sorbie, Synthesis and structure of group I and II nitrides as potential hydrogen stores, PhD diss., University of Glasgow, 2011.
M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, P. Bigenwald, and B. Gil, Phys. Rev. B 60: 1496 (1999),
https://doi.org/10.1103/PhysRevB.60.1496.
V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Stat. Solidi (b), 234: 787-795 (2002), https://doi.org/10.1002/1521-3951(200212)234:3<787::AID-PSSB787>3.0.CO;2-H.
V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, Phys. Stat. Solidi (b), 240: 425-428 (2003), https://doi.org/10.1002/pssb.200303448.
D. E. Partin, D. J. Williams, and M. O'Keeffe, J. solid state chem., 132: 56-59, (1997),
https://doi.org/10.1006/jssc.1997.7407.
O. Reckeweg and F. J. DiSalvo, Zeitschrift für anorganische und allgemeine Chemie 627, 371-377, (2001), https://doi.org/10.1002/1521-3749(200103)627:3<371::AID-ZAAC371>3.0.CO;2-A.
A. M. Nartowski, and I. P. Parkin, Polyhedron 21: 187-191, (2002), https://doi.org/10.1016/S0277-5387(01)00974-3.
H. Z. Ye, X. Y. Liu, and B. Luan, Mater. letters, 58: 2361-2364 (2004), https://doi.org/10.1016/j.matlet.2004.02.028.
J. Cui, D. Meng, Z. Wu, W. Qin, D. She, J. Kang, R. Zhang, C. Wang, and W. Yue, Cer. International 48: 363-372 (2022),
https://doi.org/10.1016/j.ceramint.2021.09.111.
M. Ullah, S. Khan, A. Laref, and G. Murtaza, Philos. Mag. 100: 768-781, (2020),
https://doi.org/10.1080/14786435.2019.1697835.
U. Paliwal, and K. B. Joshi, J. Phys. D: Appl. Phys 44: 255501(1-7), (2011). https://doi.org/10.1088/0022-3727/44/25/255501.
S. R. Römer, T. Dörfler, P. Kroll, and W. Schnick, Phys. Status Solidi B 246, 1604–1613, (2009). https://doi.org/10.1002/pssb.200945011.
S. R. Römer, W. Schnick, and P. Kroll, J. Phys. Chem. C. 113: 2943-2949, (2009),
https://doi.org/10.1021/jp8077002.
C. Braun, S. L. Börger, T. D. Boyko, G. Miehe, H. Ehrenberg, P. Höhn, and W. Schnick, J. Am. Chem. Soc. 133: 4307-4315, (2011),
https://doi.org/10.1021/ja106459e.
A. Mokhtari, and H. Akbarzadeh, Phys. B Cond. Mat. 337, 122-129, (2003),
https://doi.org/10.1016/S0921-4526(03)00387-9.
E. Orhan, E. Jobic, R. Brec, R. Marchand, and J. Y Saillard, J. Mater. Chem. 12: 2475-2479, (2002). https://doi.org/10.1039/B203500F.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich‐Wilson, B.Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustroand and B. Kirtman, WIREs Comput. Mol. Sci. 8, (2018). https://doi.org/10.1002/wcms.1360.
R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rérat and S. Casassa 2017 CRYSTAL17 User’s Manual (University of Torino).
M. F. Peintinger, D. V. Oliveira, T. Bredow, J. Comput. Chem. 34: 451-459 (2013),
https://doi.org/10.1002/jcc.23153.
D. V. Oliveira, M. F. Peintinger, J. Laun, T. Bredow, J. Comput. Chem. 40: 2364-2376, (2019),
https://doi.org/10.1002/jcc.26013.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77: 386, (1996),
https://doi.org/10.1103/PhysRevLett.77.3865.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka,O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhouand K. Burke, Phys. Rev. Lett. 100: 136406 (2008), https://doi.org/10.1103/PhysRevLett.100.136406.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13: 5188-92, (1976),
https://doi.org/10.1103/PhysRevB.13.5188.
C. G. Broyden, Math. Comput., 19, 577-93, (1965), https://doi.org/10.2307/2003941.
D. D. Johnson, Phys. Rev. B 38: 12807-13, (1988), https://doi.org/10.1103/PhysRevB.38.12807.
J. Hao, Y. Li,Q. Zhou,D. Liu, M. Li, F. Li,X, and Li X, Inorg. Chem. 48: 9737-9740, (2009),
https://doi.org/10.1021/ic901324n.
A. Erba, A. Mahmoud, D. Belmonte, R. Dovesi, J. Chem. Phys. 140: 124703, (2014),
https://doi.org/10.1063/1.4869144.
K. Toyoura, T. Goto, K. Hachiya, and R. Hagiwara, Electrochimicaacta, 51: 56-60, (2005),
https://doi.org/10.1016/j.electacta.2005.04.004.
E. Orhan, S. Jobic, R. Brec, R. Marchand, J. Y. Saillard, J. Mater. Chem. 12: 2475-2479 (2002), https://doi.org/10.1039/B203500F.
J. Li, C. Fan, X. Dong, Y. Jin, and J. He, J. Phys. Chem. C, 118: 10238-10247 (2014),
https://doi.org/10.1021/jp411692n.
J. Gao, Q. J. Liu, and B. Tang, J. App. Phys., 133: 135901 (2023), https://doi.org/10.1063/5.0139232.
R. Gaillac, P. Pullumbi, and F. X. Coudert, J. Phys.: Condens. Matter, 28: 275201, (2016),

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Mangal Chand Rolania, G. Sharma

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. All articles published in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
2. Article are open access and can be downloaded and cited.