A Novel Method for Spatially-selective ZnO Thin Film Growth by the Sol-Gel Technique

Authors

  • Arpita Das Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata 700160, India
  • Alakananda Das 2Institute of Radio Physics and Electronics, University of Calcutta, Kolkata 700009, India
  • Sayantani Sen Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 70000106, India
  • Anirban Bhattacharyya Institute of Radio Physics and Electronics, University of Calcutta, Kolkata 700009, India

DOI:

https://doi.org/10.61343/jcm.v2i02.69

Keywords:

ZnO thin film, Sol-Gel, ZnO nanowire, VLS, Electrode geometry, Lift-off

Abstract

Sol-gel deposition of ZnO using the dip-coating method typically generate uniform large area thin films on various substrates, and individual devices are created by a subsequent etching step. In this paper a method for the spontaneous formation of islands of ZnO aligned to existing electrode structures has been presented where thin films and nanostructures of ZnO were sequentially deposited on patterned substrates by sol-gel and vapor-liquid-solid processes. The results indicate spontaneous formation of spatially-selective structures of ZnO which avoid proximity to electrode edges. The morphology of these islands shows a honeycomb-like pattern with extended ridges, with ZnO nanowires depending on the underlying thin film, and are observed on the top of the ridge-like structures, thereby enhancing the surface area. This technique is well applicable for formation of ZnO-based sensor devices. Spatial selectivity of the deposition allows the development of semiconductor devices while eliminating the need of any chemical etching process step.

References

A. Janotti, C. G. Vande Walle, “Fundamentals of zinc oxide as a semiconductor”, Rep. Prog. Phys.72, (2009), 126501.

https://doi.org/10.1088/0034-4885/72/12/126501

A. K. Radzimska, T. Jesionowski, “Zinc Oxide—From Synthesis to Application: A Review”, Materials 7, (2014),2833–2881.

https://doi.org/10.3390/ma7042833

U. Ozgur, D. Hofstetter, H. Morkoc, “ZnO Devices and Applications: A Review of Current Status and Future Prospects”, Proc. IEEE 98(7), (2010), 1255–1268.

https://doi.org/10.1109/JPROC.2010.2044550

B. K. Sonawane, M. P. Bhole, D. S. Patil, “Structural, optical and electrical properties of post annealed Mg doped ZnO films for optoelectronics applications”, Opt. Quant. Electron 41, (2009), 17–26.

https://doi.org/10.1007/s11082-009-9317-y

M. C. Jun, J. H. Koh, “Optical and structural properties of Al-doped ZnO thin films by sol gel process”, J Nanosci Nanotechnol. 13(5), (2013), 3403-7. https://doi.org/10.1166/jnn.2013.7314

C. H. Park, S. B. Zhang, Su-Huai Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B 66, (2002), 073202. https://doi.org/10.1103/PhysRevB.66.073202

Z. Ye, H. He, L. Jiang, “Co-doping: an effective strategy for achieving stable p-type ZnO thin films”, Nano Energy 52, (2018), 527-540.

https://doi.org/10.1016/j.nanoen.2018.08.001

Y. S. Kim, W. P. Tai, “Electrical and optical properties of Al-doped ZnO thin films by sol–gel process”, Appl. Surf. Sci. 53(11), (2007), 4911-4916.

https://doi.org/10.1016/j.apsusc.2006.10.068

V. Bhosle, A. Tiwari, J. Narayan “Electrical properties of transparent and conducting Ga doped ZnO”, J. Appl. Phys. 100, (2006), 033713. https://doi.org/10.1063/1.2218466

K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, “Preparation and characterization of Mg-doped ZnO thin films by sol–gel method”, Appl. Surf. Sci. 258(8), (2012), 3710-3713. https://doi.org/10.1016/j.apsusc.2011.12.011

M. Ajili, M. Castagné, N. K. Turki, “Study on the doping effect of Sn-doped ZnO thin films”, Superlattices Microstruct. 53, (2013), 213-222. https://doi.org/10.1016/j.spmi.2012.10.012

S. A. Ahmed, “Structural, optical, and magnetic properties of Mn-doped ZnO samples”, Results in Physics 7, (2017), 604-610. https://doi.org/10.1016/j.rinp.2017.01.018

A. K. Mishra, D. Das, “Investigation on Fe-doped ZnO nanostructures prepared by a chemical route”, Materials Science and Engineering: B171, (2010), 1–3.

https://doi.org/10.1016/j.mseb.2010.03.045

K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, “Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth”, RSC Adv.9, (2019), 14638-14648. https://doi.org/10.1039/C9RA02091H

S. Baruah, J. Dutta, “Hydrothermal growth of ZnO nanostructures”, Sci. Technol. Adv. Mater. 10, (2009), 013001.

https://doi.org/10.1088/1468-996/10/1/013001

P. G. Roy, A. Dutta, A. Das, S. Sen, P. Pramanik, A. Bhattacharyya, “VLS-grown diffusion doped ZnO nanowires and their luminescence properties”, Mater. Res. Express 2 (2015) 075007. https://doi.org/10.1088/2053-1591/2/7/075007

M. Masłyk, M.A. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka, E. Kamińska, “Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering”, Appl. Surf. Sci. 389, (2016), 287-293.

https://doi.org/10.1016/j.apsusc.2016.07.098.

L. N. Protasova, E. V. Rebrov, K. L. Choy, S. Y. Pung, V. Engels, M. Cabaj, A. E. H. Wheatley, J. C. Schouten, “ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols”, Catal. Sci. Technol.1, (2011), 768-777. https://doi.org/10.1039/C1CY00074H

J. S. Wang, C. S. Yang, P. I. Chen et al., “Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy,” Applied Physics A, 97(3), (2009), 553–557.

https://doi.org/10.1007/s00339-009-5436-3

L. Znaidi, “Sol–gel-deposited ZnO thin films: A review”, Materials Science and Engineering: B, 174(1–3), (2010). https://doi.org/10.1016/j.mseb.2010.07.001

A. Das, P. G. Roy, A. Dutta, S. Sen, P. Pramanik, D. Das, A. Banerjee, A. Bhattacharyya, “Mg and Al co-doping of ZnO thin films: Effect on ultraviolet photoconductivity”, Materials Science in Semiconductor Processing, 54, (2016), 36-41. https://doi.org/10.1016/j.mssp.2016.06.018

Downloads

Published

2025-03-03

How to Cite

1.
Das A, Das A, Sen S, Bhattacharyya A. A Novel Method for Spatially-selective ZnO Thin Film Growth by the Sol-Gel Technique. J. Cond. Matt. [Internet]. 2025 Mar. 3 [cited 2025 Mar. 9];2(02):37-42. Available from: https://jcm.thecmrs.in/index.php/j/article/view/69

Issue

Section

Research Article

Categories