Primordial Black Holes as Dark Matter Candidates in a Cyclic Universe

Authors

  • Bijan Kumar Gangopadhyay

DOI:

https://doi.org/10.61343/jcm.v2i02.59

Keywords:

Cyclic Universe, Primordial Black hole, Dark matter, SMBH

Abstract

This paper explores the role of primordial black holes (PBHs) as dark matter candidates within a cyclic universe framework. The model employs a scalar field to drive expansion, contraction, and bounce cycles, with PBHs persisting as stable dark matter components. Our analysis of PBH density evolution suggests that their interactions with the scalar field and visible matter contribute to mass-energy continuity across cycles. Numerical simulations reveal that PBHs account for approximately 2.6% of the total dark matter density. Additionally, our model predicts that supermassive black holes (SMBHs) gradually lose mass due to Hawking radiation and dark matter interactions, affecting cosmic structure and evolution. These findings underscore the potential role of PBHs in cyclic cosmology and dark matter composition.

References

Steinhardt, P. J., & Turok, N. (2002), “A cyclic model of the universe. Science”, 296 (5572), 1436-1439.

Ratra, B., & Peebles, P. J. E. (1988), “Cosmological consequences of a rolling homogeneous scalar field”, Physical Review D, 37 (12), 3406.

Hawking, S. W. (1975), “Particle creation by black holes”, Communications in Mathematical Physics, 43(3), 199-220.

Green Anne M., “Primordial black holes as a dark matter candidate - a brief overview”, Nucl. Phys. B 1003 (2024) 116494.

Green, A.M., Kavanagh, B.J., 2021, “Primordial Black Holes as a dark matter candidate”, J. Phys. G 48, 043001. doi:10.1088/1361-6471/abc534,

Zel’dovich, Y.B., Novikov, I.D., 1967, “The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model”, Sov. Astron. 10, 602.

Carr, B.J., Hawking, S.W., 1974, “Black holes in the early Universe. Monthly Notices of the Royal Astronomical Society”, 168, 399 – 415, doi:10.1093/mnras/168.2.399.

Carr, B. J. (1975), “The primordial black hole mass spectrum”. The Astrophysical Journal, 201, 1–19.

Niemeyer, J. C., & Jedamzik, K. (1999), “Dynamics of Primordial Black Hole Formation”, Physical Review D, 59(12), 124013. DOI: 10.1103/PhysRevD.59.124013.

Carr, B., Kühnel, F., & Sandstad, M. (2016), “Primordial Black Holes as Dark Matter”, Physical Review D, 94(8), 083504. DOI: 10.1103/PhysRevD.94.083504.

Kohri, K., Nakama, T., & Suyama, T. (2008), “Primordial Black Holes and Big Bang Nucleosynthesis”, Physical Review D, 78(6), 067301. DOI: 10.1103/PhysRevD.78.067301.

Abbott, B. P., et al. (2016), “Observation of Gravitational Waves from a Binary Black Hole Merger”, Physical Review Letters, doi: 10.1103/PhysRevLett.116.061102.

Abbott, R., et al. (2021), “Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run”, Physical Review X, 11(2), 021053.

Ijjas, A., & Steinhardt, P. J. (2017), “Classically stable nonsingular cosmological bounces”, Physics Letters B, 764, 289–294.

Peskin, M. E., & Schroeder, D. V. (1995), “An Introduction to Quantum Field Theory”, Westview Press.

Mukhanov, V. (2005), “Physical Foundations of Cosmology”, Cambridge University Press.

Khoury, B. A. Ovrut, P. J. Steinhardt, N. Turok, “The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang”, Phys. Rev. D 64, 123522 (2001).

Green, A. M., & Liddle, A. R. (1997), “Constraints on the density perturbation spectrum from primordial black holes”, Physical Review D, 56(10), 6166-6174.

Ricotti, M., & Gould, A. (2009), “A New Probe of Dark Matter Properties: Microlensing of PBH Clusters around SMBHs” The Astrophysical Journal, 707, 979–987.

Vogelsberger, M., & Zavala, J. (2013), “Direct detection of dark matter through galactic dynamics”, Monthly Notices of the Royal Astronomical Society, 430, 1722–1738.

Spergel D.N. and P. J. Steinhardt, “Observational Evidence for Self-Interacting Cold Dark Matter”, vol. 84, no. 17, pp. 3760–3763, Apr. 2000.

Feng J. L., “Dark Matter Candidates from Particle Physics and Methods of Detection”, Annual Review of Astronomy and Astrophysics, vol. 48, no. 1, pp. 495–545, Sep. 2010 doi.org/10.1146/annurev-astro-082708-101659.

Sasaki, M., Suyama, T., Tanaka, T., & Yokoyama, S. (2018), “Primordial black holes-Perspectives in gravitational wave astronomy”, Classical and Quantum Gravity, 35(6), 063001. DOI: 10.1088/1361-6382/aaa7b4.

Carr, B. J. (1975), “The primordial black hole formation condition and its mass relation with horizon mass”, The Astrophysical Journal, Volume 201, Page 1-8.

Hawking, S. W. (1971), “Gravitational coTllapse of density perturbations in the early universe”, Monthly Notices of the Royal Astronomical Society, Volume 152, Page 75.

Carr, B. J., Kohri, K., Sendouda, Y., & Yokoyama, J. (2010), “New cosmological constraints on primordial black holes”, Physical Review D, 81(8), 084022, doi.org/10.1103.

Banados, E., et al. (2018), “An 800 Million Solar Mass Black Hole at Redshift 7.54”, Nature, 553, 473-476.

Inman, D., & Ali-Haïmoud, Y. (2019), “Constraining Primordial Black Holes as Dark Matter Using the Cosmic Microwave Background”, Physical Review D, 100, 023519.

Alcock, C., Allsman, R. A., Alves, D. R., et al. (2000), “The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations”, The Astrophysical Journal, 542(1), 281–307. doi.org/10.1086/317014.

Planck Collaboration. (2020), “Planck 2018 results. VI. Cosmological parameters”, Astronomy & Astrophysics, 641, A6. doi.org/10.1051/0004-6361/201833910.

Dodelson S. (2003). Modern Cosmology. Academic Press, pp 208-210.

Weinberg S, (2008). Cosmology. Oxford University Press, pp 324-327.

Alcock, C., et al. (2000), “The MACHO Project: Microlensing Results from 5.7 Years of Monitoring”, Astrophysical Journal, 542, 281-307. doi,org/10.1086/317199.

Carr, B. J., Kuhn, J., Sendouda, Y., & Yokoyama, J. (2016), “Primordial Black Holes as Dark Matter”, Physical Review D, 94(4), 044036. doi.org/10.1103/PhysRev D.94.044036.

Page, D. N. (1976), “Particle Creation in Nonstationary Scattering Processes”, Physical Review D, 14, 3260-3273. doi.org/10.1103/PhysRev D.14.3260.

Downloads

Published

2025-03-03

How to Cite

1.
Gangopadhyay BK. Primordial Black Holes as Dark Matter Candidates in a Cyclic Universe. J. Cond. Matt. [Internet]. 2025 Mar. 3 [cited 2025 Mar. 9];2(02):26-3. Available from: https://jcm.thecmrs.in/index.php/j/article/view/59

Issue

Section

Research Article

Categories