First Principles Study on The Effect of Single Beryllium and Magnesium Adatom on Germanane Monolayer Surface

Authors

  • Alhassan Shuaibu Kaduna state university, Nigeria
  • Oyedare Peter Olusola Science Laboratory Department Federal Polytechnic Ede, Osun State
  • Jamila Muhammad Wada Science Laboratory Department Federal Polytechnic Ede, Osun State
  • Yakubu Aliyu Tanko Department, of Physics Kaduna State University, Kaduna, State, Nigeria
  • Maharaz Mohammed Nasir Department of Physics Federal University Dutse. Jigawa State

DOI:

https://doi.org/10.61343/jcm.v2i02.53

Keywords:

Germanene Monolayer, Density Functional Theory, Adsorption, Electronic Properties

Abstract

Theoretical calculations predict that unlike the planar structure of graphene, the germanene also has stable, two-dimensional (2D), low-buckled, honeycomb structure which make it more interested in the field of optoelectronic applications recently, but the major issue with germanene are larger germanium-germanium (Ge-Ge) interatomic distance and zero energy band gap which become a great research gap. In this study, the effect of alkaline earth metal (AEM) Magnesium (Mg) and Beryllium (Be) adsorption on germanane monolayer within the density functional theory as implemented in Quantum ESPRESSO code has been investigated, Our calculated equilibrium hexagonal lattice constant a and the buckling height δ are found to be 4.047 Å and 0.689 Å respectively, among the chosen adsorptions sites (H, B and T) B side is found to be the most favourable side  for both Be and Mg absorptions, due to the less adsorption energy and AEM-Ge distances. For the electronic properties. The Be and Mg adsorptions lead to semiconducting behaviour with direct gap of about 0.206 eV 0.629 eV for Be and Mg adsorption respectively. The obtained results are in agreement with many reported theoretical results.

References

M. E. Dávila, Xian, L., Cahangirov, S., Rubio, A., & Le Lay, G. New Journal of Physics, 16(9), 095002. 2014.

S., Cahangirov, Topsakal, M., Aktürk, E., Şahin, H., & Ciraci, S. Physical review letters, 102(23), 236804. 2009.

N. J. Roome, & Carey, J. D. ACS applied materials & interfaces, 6(10), 7743-7750. (2014).

C. C. Liu, Feng, W., & Yao, Y., Physical review letters, 107(7), 076802. (2011).

A. Acun, Zhang, L., Bampoulis, P., Farmanbar, M. V., van Houselt, A., Rudenko, A. N., & Zandvliet, H. J. Journal of physics: Condensed matter, 27(44), 443002. (2015).

Z. Ni, Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., ... & Lu, J. Nano letters, 12(1), 113-118. (2012).

C. Si, Liu, J., Xu, Y., Wu, J., Gu, B. L., & Duan, W. Physical Review B, 89(11), 115429. 2014.

S. S. Li, Zhang, C. W., Ji, W. X., Li, F., Wang, P. J., Hu, S. J., ... & Liu, Y. S. Physical Chemistry Chemical Physics, 16(30), 15968-15978. (2014).

Y. C. Cheng, Zhu, Z. Y., Mi, W. B., Guo, Z. B., & Schwingenschlögl, U. Physical Review B, 87(10), 100401. (2013).

M. W. Chuan, Wong, K. L., Hamzah, A., Rusli, S., Alias, N. E., Lim, C. S., & Tan, M. L.. Current Nanoscience, 16(4), 595-607. (2020).

Q. Pang, Zhang, Y., Zhang, J. M., Ji, V., & Xu, K. W. Nanoscale, 3(10), 4330-4338. (2011).

H. Sahin, & Peeters, F. M. Physical Review B -Condensed Matter and Materials Physics, 87(8), 085423. (2013).

S. Abubakar, Rahman, M. M., Abdullahi, Y. Z., Zainuddin, H., Muhida, R., & Setiyanto, H. Graphene, 1(2), 78-85. (2013).

M. M. Rahman, Abdullahi, Y. Z., Shuaibu, A., Abubakar, S., Zainuddin, H., Muhida, R., & Setiyanto, H. Journal of Computational and Theoretical Nanoscience, 12(9), 1995-2002. (2015).

J. Chen, Wang, Z., Dai, X., Xiao, J., Long, M., & Chen, T. Physica E: Low-dimensional Systems and Nanostructures, 124, 114365. (2020).

S. L. Usman, Shuaibu, A., & Maharaz, M. N. Computational And Experimental Research In Materials And Renewable Energy, 7(1), 9-26. (2024).

P. Giannozzi, Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. Journal of physics: Condensed matter, 21(39), 395502. (2009).

J. P. Perdew, Burke, K., & Ernzerhof, M. J. P. R. L. Perdew, burke, and ernzerhof reply. Physical Review Letters, 80(4), 891. (1998).

J. Furthmüller, Käckell, P., Bechstedt, F., & Kresse, G. Physical Review B, 61(7), 4576. (2000).

L. Zhang, Bampoulis, P., van Houselt, A., & Zandvliet, H. J. Applied physics letters, 107(11). (2015).

H. J. Monkhorst, & Pack, J. D. Physical review B, 13(12), 5188. (1976).

D. Coello-Fiallos, Tene, T., Guayllas, J. L., Haro, D., Haro, A., & Gomez, C. V. Materials Today: Proceedings, 4(7), 6835-6841. (2017).

D. M. Hoat, Nguyen, D. K., Ponce-Perez, R., Guerrero-Sanchez, J., Van On, V., Rivas-Silva, J. F., & Cocoletzi, G. H. Applied Surface Science, 551, 149318. (2021).

R. Hussain, Saeed, M., Mehboob, M. Y., Khan, S. U., Khan, M. U., Adnan, M., ... & Ayub, K. RSC advances, 10(35), 20595-20607. (2020).

M. R. H. Mojumder, arXiv preprint arXiv:2201.02676. (2022).

J. E. Padilha, & Pontes, R. B. Solid State Communications, 225, 38-43. (2016).

W. Q. Meysam Bagheri Tagani, Qiwei Tian, Sahar Izadi Vishkayi, Li Zhang, Long-Jing Yin, Yuan Tian, Lijie Zhang, and Zhihui Qin." Applied Physics Letters 121, no. 5 (2022).

Typical illustration of the three adsorption sites HBT of a relaxed 4 × 4×1 germanene monolayer supercell

Downloads

Published

2025-03-03

How to Cite

1.
Shuaibu A, Olusola OP, Wada JM, Tanko YA, Nasir MM. First Principles Study on The Effect of Single Beryllium and Magnesium Adatom on Germanane Monolayer Surface. J. Cond. Matt. [Internet]. 2025 Mar. 3 [cited 2025 Mar. 9];2(02):6-11. Available from: https://jcm.thecmrs.in/index.php/j/article/view/53