Ab Initio Study of Structural and Magnetic Properties of Cobalt Doped Zinc Oxide

Authors

  • Yojana Sharma
  • Vikas Anand Central University of Himachal Pradesh
  • Pawan Heera Central University of Himachal Pradesh

DOI:

https://doi.org/10.61343/jcm.v1i02.36

Keywords:

Band structure, magnetic moment, DFT(Density Functional Theory), thermodynamic stability, ZnO

Abstract

Abstract.In this study, we have investigated the electronic and magnetic properties of Cobalt doped zinc oxide (ZnO) bulk materials using density functional theory (DFT) calculations. The substitution of Co atoms into the ZnO lattice is systematically explored to understand its impact on the electronic band structure, magnetic moments and stability of the material. It is observed that Co doping introduces localized magnetic moments of 3.073 μB associated with Co atoms. The electronic band structure exhibits the semi-metallic nature after the Co doping with a majority spin (↑) and a minority spin (↓) magnetic configuration hybridization between Co 3d and 2p orbitals of O, indicating the potential for spin-polarized transport in Co-doped ZnO. We have also analyzed the formation energies to assess the thermodynamic stability. It is observed that the binding energy per atom slightly decreased to -3.563 eV, indicating stable Co incorporation. From the obtained results it can be concluded that, through controlled doping strategies the electronic and magnetic properties in ZnO-based materials can be altered for desired properties.

References

D. D. Awschalom and M. E. Flatte, Nature Phys. 3, 153 (2007).

Pratap, Surender, et al. "Recent development of two-dimensional tantalum dichalcogenides and their applications", Micro and Nanostructures (2023): 207627.

T. Dietl et al., Science 287, 1019 (2000).

K. Sato and H. Katayama-Yoshida, Semicond. Sci.Technol. 17, 367 (2002).

R. Janisch, P. Gopal, and N. A. Spaldin, J. Phys. Condens.Matter 17, R657 (2005).

P. Gopal and N. A. Spaldin, Phys. Rev. B 74, 094418(2006).

E.-J. Kan et al., J. Appl. Phys. 102, 033915 (2007).

C. H. Patterson, Phys. Rev. B 74, 144432 (2006).

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

Y. Fukuma, F. Odawara, H. Asada, and T. Koyanagi, Phys. Rev. B 78, 104417 (2008).

G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, S. Colis, T. M. Pedersen, A. Moewes, and A. Dinia, Phys. Rev. B 75, 195215 (2007).

D. Rubi, J. Fontcuberta, A. Calleja, L. Aragonès, X. G. Capdevila, and M. Segarra, Phys. Rev. B 75, 155322 (2007).

Y. He, P. Sharma, K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tse, S. Yin, and J. Z. Jiang, Phys. Rev. B 78, 155202 (2008).

M. H. F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout, and U. V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005).

X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao, and L. X. Song, Appl. Phys. Lett. 88, 252503 (2006).

D. Iusan, R. Knut, B. Sanyal, O. Karis, O. Eriksson, V. A. Coleman, G. Westin, J. M. Wikberg, and P. Svedlindh, Phys. Rev. B 78, 085319 (2008).

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, Phys. Rev. B 78, 193311 (2008).

M. S. Park and B. I. Min, Phys. Rev. B 68, 224436 (2003).

Soler, José M., et al. "The SIESTA method for ab initio order-N materials simulation." Journal of Physics: Condensed Matter 14.11 (2002): 2745.

Mostofi, Arash A., et al. "wannier90: A tool for obtaining maximally-localisedWannier functions." Computer physics communications 178.9 (2008): 685-699.

Jayakumar, O. D., I. K. Gopalakrishnan, and S. K. Kulshreshtha. "The structural and magnetization studies of Co-doped ZnO co-doped with Cu: Synthesized by co-precipitation method", Journal of Materials Chemistry 15.34 (2005): 3514-3518

Devi, Anjna, et al. "Electronic Band Gap Tuning and Calculations of Mechanical Strength and Deformation Potential by Applying Uniaxial Strain on MX2 (M= Cr, Mo, W and X= S, Se) Monolayers and Nanoribbons", ACS omega 7.44 (2022): 40054-40066.

Paudel, Tula R., and Walter RL Lambrecht. "First-principles calculation of the O vacancy in ZnO: A self-consistent gap-corrected approach", Physical Review B 77.20 (2008): 205202.

Lany, Stephan, and Alex Zunger, "Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs", Physical Review B 78.23 (2008): 235104.

Published

2023-12-01

How to Cite

1.
Sharma Y, ANAND V, Heera P. Ab Initio Study of Structural and Magnetic Properties of Cobalt Doped Zinc Oxide. J. Cond. Matt. [Internet]. 2023 Dec. 1 [cited 2025 Jan. 22];1(02):48-51. Available from: https://jcm.thecmrs.in/index.php/j/article/view/36

Issue

Section

Research Article

Categories