All Charm Tetraquark Spectra in Coulombic Plus Quadratic Potential

Authors

  • Chetan Lodha sardar vallabhbhai national institute of technology
  • Juhi Oudichhya Sardar vallabhbhai national institute of technology
  • Rohit Tiwari Sardar Vallabhbhai National Institute of Technology
  • Ajay Kumar Rai Sardar Vallabhbhai National Institute of Technology

DOI:

https://doi.org/10.61343/jcm.v1i02.23

Keywords:

High Energy Physics, Tetraquark, Diquark, Quark, Hadron, Meson

Abstract

A non-relativistic model with relativistic corrections is used to generate the mass spectra of all charm tetraquark in the diquark-antidiquark system. Fitting parameters are derived by numerically solving the Schrodinger equation for the charmonium meson using the coulombic potential and the harmonic confinement interaction potential. The mass spectra of all charm tetraquark is calculated in present work by systematically reducing a four-body problem to a two-body problem using the parameters obtained from charmonium spectra.

References

M. Gell-Mann, Physics Letters 8, 214–215 (1964).

T. Lesiak (Belle), AIP Conf. Proc. 814, 493–497 (2006).

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, Phys. Rept. 873, 1–154 (2020).

A. V. Berezhnoy, A. K. Likhoded, A. V. Luchinsky, and A. A. Novoselov, Phys. Rev. D 84, p. 094023 (2011).

D. B. Lichtenberg, E. Predazzi, D. H. Weingarten, and J. G. Wills, Phys. Rev. D 18, p. 2569 (1978).

R. L. Jaffe, Phys. Rev. D 15, p. 267 (1977).

R. L. Jaffe, Phys. Rev. Lett. 38, 195–198 (1977).

C. Gignoux, B. Silvestre-Brac, and J. M. Richard, Phys. Lett. B 193, p. 323 (1987).

R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143–194 (2017).

S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys. 90, p. 015003 (2018).

A. Ali, J. S. Lange, and S. Stone, Prog. Part. Nucl. Phys. 97, 123–198 (2017).

A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rept. 668, 1–97 (2017).

S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, p. 262001 (2003).

G. Cotugno, R. Faccini, A. D. Polosa, and C. Sabelli, Phys. Rev. Lett. 104, p. 132005 (2010).

R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, p. 022003 (2017).

M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, p. 112003 (2015).

R. Aaij et al. (LHCb), Phys. Rev. D 95, p. 012002 (2017).

R. Aaij et al. (LHCb), Sci. Bull. 65, 1983–1993 (2020).

R. Aaij et al. (LHCb), Phys. Rev. Lett. 127, p. 082001 (2021).

R. L. Workman et al. (Particle Data Group), PTEP 2022, p. 083C01 (2022).

J. Oudichhya, K. Gandhi, and A. K. Rai, Phys. Rev. D 108, p. 014034 (2023).

V. Kher and A. K. Rai, Chin. Phys. C 42, p. 083101 (2018).

V. Kher, N. Devlani, and A. K. Rai, Chin. Phys. C 41, p. 093101 (2017).

V. Kher, N. Devlani, and A. K. Rai, Chin. Phys. C 41, p. 073101 (2017).

A. K. Rai, B. Patel, and P. C. Vinodkumar, Phys. Rev. C 78, p. 055202 (2008).

R. Chaturvedi and A. K. Rai, Eur. Phys. J. A 58, p. 228 (2022).

K. R. Purohit, P. Jakhad, and A. K. Rai, Phys. Scripta 97, p. 044002 (2022).

M. Wagner, A. Abdel-Rehim, C. Alexandrou, M. Dalla Brida, M. Gravina, G. Koutsou, L. Scorzato, and C. Urbach, J. Phys. Conf. Ser. 503, p. 012031 (2014).

W. Chen, H.-X. Chen, X. Liu, T. G. Steele, and S.-L. Zhu, Phys. Lett. B 773, 247–251 (2017).

Z. Ghalenovi and M. M. Sorkhi, Eur. Phys. J. Plus 135, p. 399 (2020).

S. Noh and W. Park, Phys. Rev. D 108, p. 014004 (2023).

H. Mutuk, Eur. Phys. J. C 83, p. 358 (2023).

P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, Phys. Lett. B 841, p. 137918 (2023).

A. K. Rai, J. N. Pandya, and P. C. Vinodkumar, Indian J. Phys. A 80, 387–392 (2006).

D. P. Rathaud and A. K. Rai, Eur. Phys. J. Plus 132, p. 370 (2017).

D. P. Rathaud and A. K. Rai, Indian J. Phys. 90, 1299–1305 (2016).

A. K. Rai and D. P. Rathaud, Eur. Phys. J. C 75, p. 462 (2015).

A. K. Rai, J. N. Pandya, and P. C. Vinodkummar, Nucl. Phys. A 782, 406–409 (2007).

R. Tiwari and A. K. Rai, DAE Symp. Nucl. Phys. 66, 833–834 (2023).

R. Tiwari and A. K. Rai, Few Body Syst. 64, p. 20 (2023).

R. Tiwari, J. Oudichhya, and A. K. Rai, “Mass-spectra of light-heavy tetraquarks,” arXiv:2205.00679 .

R. Tiwari, D. P. Rathaud, and A. K. Rai, Eur. Phys. J. A 57, p. 289 (2021).

R. Tiwari, D. P. Rathaud, and A. K. Rai, Indian J. Phys. 97, 943–954 (2023).

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 21, p. 203 (1980).

S. Godfrey and N. Isgur, Phys. Rev. D 32, 189–231 (1985).

Y. Koma, M. Koma, and H. Wittig, Phys. Rev. Lett. 97, p. 122003 (2006).

M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455–511 (2008).

W. Lucha, F. F. Schoberl, and D. Gromes, Phys. Rept. 200, 127–240 (1991).

V. R. Debastiani and F. S. Navarra, Chin. Phys. C 43, p. 013105 (2019).

J. Oudichhya and A. K. Rai, Eur. Phys. J. A 59, p. 123 (2023).

J. Oudichhya, K. Gandhi, and A. K. Rai, Nucl. Phys. A 1035, p. 122658 (2023).

J. Oudichhya, K. Gandhi, and A. K. Rai, Phys. Scripta 97, p. 054001 (2022).

J. Oudichhya, K. Gandhi, and A. K. Rai, Phys. Rev. D 104, p. 114027 (2021).

J. Oudichhya, K. Gandhi, and A. K. Rai, Phys. Rev. D 103, p. 114030 (2021).

Published

2023-12-01

How to Cite

1.
Lodha C, Oudichhya J, Tiwari R, Rai AK. All Charm Tetraquark Spectra in Coulombic Plus Quadratic Potential. J. Cond. Matt. [Internet]. 2023 Dec. 1 [cited 2024 Dec. 14];1(02):105-9. Available from: https://jcm.thecmrs.in/index.php/j/article/view/23

Issue

Section

Research Article

Categories