Study of negative permittivity behavior Sr7Mn4O15-SrO nanocomposite

Authors

  • Gurudeo Nirala A research scholar
  • Harish Verma
  • Rajni Baranwal A research scholar
  • Shail Upadhyay Associate professor

DOI:

https://doi.org/10.61343/jcm.v1i02.17

Keywords:

Sr7Mn4O15; Composite; Negative permittivity; Drude-Lorentz model.

Abstract

Negative permittivity has been researched extensively in a wide range of metamaterials and composites. Using a solid-state ceramic route, a composite of Sr7Mn4O15 - SrO has been produced. Above a specified temperature (Tc), a change in permittivity sign from positive to negative is observed at all measured frequencies (10 Hz-2MHz). Experimental data of real part of permittivity was fitted to Drude-Lorentz oscillator model. Plasma oscillations of thermally excited free carriers have been identified as the cause of negative permittivity. High temperature plasma plasmonic activity of synthesized composite make it promising metamaterial for electromagnetic devices working in the radio frequency (10 Hz -2MHz) range.

Author Biographies

Gurudeo Nirala, A research scholar

Department of Physics, IIT BHU Varanasi, U.P., India

Rajni Baranwal, A research scholar

Department of Physics, IIT BHU Varansi, U.P., India

Shail Upadhyay, Associate professor

Department of Physics, IIT BHU Varansi, U.P., India

References

Q. Zhao, D. Lippens, F. Zhang, J. Zhou, Materials Today 12 (2009) 60–69.

J. Wang, S. Chen, X. Wang, Z. Shi, F. Mao, ACS Appl Mater Interfaces 9 (2017) 1793–1800.

Y.F. Hou, T.D. Zhang, Y. Yu, R.L. Han, W.L. Li, W.D. Fei, ACS Appl Mater Interfaces 8 (2016) 22354–22360.

P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, Nat Photonics 6 (2012) 259–264.

G. He, R.X. Wu, Y. Poo, P. Chen, J Appl Phys 107 (2010).

P. Drude, Ann Phys 306 (1900) 566–613.

T. Haldar, U. Kumar, B.C. Yadav, V.V.R.K. Kumar, Ceram Int 47 (2021) 1389–1398.

B. Li, W.H. Zhong, G. Sui, Advanced Materials 21 (2009) 4176–4180.

X. Yao, J. Qiu, X. Kou, Mater Chem Phys 208 (2018) 177–182.

D. Estevez, L. Panina, H.X. Peng, Y. Luo, L. Quan, Y.W. Mai, F. Qin, Compos Sci Technol 171 (2019) 206–217.

P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Research 2019 (2019) 1–11.

X.M. Yang, A.M. Zhang, F.M. Zhang, G.T. Zhou, K. Lv, G.F. Cheng, X.S. Wu, W. Xie, X.M. Gu, J Alloys Compd 699 (2017) 230–234.

T. Haldar, U. Kumar, B.C. Yadav, V.V.R.K. Kumar, Ceram Int 47 (2021) 1389–1398.

G. Nirala, S. Upadhyay, T. Katheriya, D. Yadav, J Eur Ceram Soc 42 (2022) 453–461.

G. Fan, Y. Liu, R. Fan, Z. Wang, K. Sun, J Mater Sci Technol 61 (2021) 125–131.

Published

2023-12-01

How to Cite

1.
Gurudeo Nirala, Verma H, Rajni Baranwal, Upadhyay S. Study of negative permittivity behavior Sr7Mn4O15-SrO nanocomposite. J. Cond. Matt. [Internet]. 2023 Dec. 1 [cited 2024 Nov. 21];1(02):90-3. Available from: https://jcm.thecmrs.in/index.php/j/article/view/17