Divacancy Binding Energy, Formation Energy and Surface Energy of bcc Alkali Metals Using MEAM Potential
DOI:
https://doi.org/10.61343/jcm.v3i02.154Keywords:
Modified embedded atom method, Phonon dispersions, Formation energy, Divacancy binding energy, Surface energyAbstract
The Modified Embedded Atom Method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy, and surface energies for low-index planes in body-centered cubic (bcc) alkali metals. The calculated divacancy binding energies and vacancy formation energies show good agreement with experimental data and other available computational results.
References
Johnson R.A., Oh D.J. (1989). Analytic embedded atom method model for bcc metals. J. Mater. Res. 4, 1195–1201.
Guellil A.M., Adams J.B. (1992). The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res. 7(3), 639–652.
Hu W., Shu X., Zhang B. (2002). Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials. Comput. Mater. Sci. 23, 175–189.
Zhang J.M., Wen Y.N., Xu K.W. (2006). Atomic simulation of the vacancies in BCC metals with MAEAM. Central European Journal of Physics 4, 481–493.
Cui Z., Gao F., Cui Z., Qu J. (2012). Developing a second nearest-neighbor modified embedded atom method interatomic potential for lithium. Modelling Simul. Mater. Sci. Eng. 20(1), 015014.
Yuan X., Takahashi K., Yin Y., Onzawa T. (2003). Development of modified embedded atom method for a bcc metal: lithium. Modelling Simul. Mater. Sci. Eng. 11, 447–456.
Gairola V., Semalty P.D., Ram P.N. (2013). Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials. Pramana – J. Phys. 80, 1041–1050.
Gairola V., Semalty P.D., Ram P.N. (2014). Vibrational properties of vacancy in bcc Nb using embedded atom method. Indian J. Phys. 88, 171–176.
Gairola V., Semalty P.D. (2014). Vibrational Properties of Vacancy in Na and K Using MEAM Potential. Commun. Comput. Phys. 15, 556–568.
Ram P.N., Gairola V., Semalty P.D. (2016). Vibrational properties of vacancy in Au using modified embedded atom method potentials. J. Phys. Chem. Solids 94, 41–46.
Zhang J.M., Wen Y.N., Xu K.W. (2008). MAEAM Investigation of Phonons for Alkali Metals. J. Low Temp. Phys. 150, 730–738.
Rose J.H., Smith J.R., Guinea F., Ferrante J. (1984). Universal features of the equation of state of metals. Phys. Rev. B 29, 2963–2969.
Hu W., Masahiro F. (2002). The application of the analytic embedded atom potentials to alkali metals. Modelling Simul. Mater. Sci. Eng. 10(6), 707–718.
Ouyang Y., Zhang B., Liao S. (1994). Vacancies in metals. Sci. China A 24, 834–839.
Takai O., Doyama M. (1987). Interactions between point defects and migration energies of trivacancies in metals. Mater. Sci. Forum 15–18, 161–168.
Tyson W.R., Miller W.A. (1977). Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267–276.
De Boer F.R. (1988). Cohesion in Metals: Transition Metal Alloys. North-Holland, Amsterdam.
Rose J.H., Dobson J.F. (1981). Face dependent surface energies of simple metals. Solid State Commun. 37(2), 91–96.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Shweta Uniyal, Manesh Chand

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright© by the author(s). Published by journal of Condensed Matter. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.