Synthesis and Characterisation of PANI/GNS and PANI/GNS/TiO2 Nanocomposites for Room Temperature LPG Gas Sensing Application
DOI:
https://doi.org/10.61343/jcm.v3i02.145Keywords:
PANI, TiO2, Graphene (GNS), Polymerization, Nanocomposite, LPG, SensitivityAbstract
Pure polyaniline (PANI), PANI/GNS (1%), and PANI/GNS (2%)/TiO2 (20%) were synthesised by the situ chemical oxidation polymerisation method. Titanium dioxide (TiO2) was synthesised using the sol-gel method and graphene (GNS) functionalized by acidic treatment. The XRD, FTIR, and SEM characterization for structural, functional, and morphological investigations has been carried out. X-ray diffraction of nanocomposite materials shows the highly crystalline nature of synthesized material. FTIR analysis revealed the existence of a functional group in nanocomposite materials. SEM analysis shows highly porous nanocomposite materials are formed, that exhibit a lack of agglomeration with uniform distribution of GNS, and TiO2 nanoparticles within the PANI matrix. The resistance change response of synthesised material toward LPG was measured at low and high temperatures at 250 parts per million (ppm), 500 ppm, and 1000 ppm of LPG gas, which determined the characteristics like sensitivity, response, and recovery time of the nanocomposite material. Sensitivity shows that nanocomposite material is highly sensitive towards LPG nearly at 37 °C. In ternary nanocomposite, the response time and recovery time are faster as compared to binary nanocomposite material. The response time of the ternary nanocomposite is 16 seconds and the recovery time is 83 seconds. Study shows that PANI/GNS (2%)/TiO2 (20%) nanocomposite material shows better sensitivity, response and recovery time as compared to PANI/GNS (1%) nanocomposite material towards the higher concentration of LPG gas.
References
Dhawale, D. S., Dubal, D. P., More, A. M., Gujar, T. P., & Lokhande, C. D. (2010). Room temperature liquefied petroleum gas (LPG) sensor. Sensors and Actuators, B: Chemical, 147(2), 488-494.
Patil, D., Patil, V., & Patil, P. (2011). Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sensors and Actuators, B: Chemical, 152(2), 299-306.
Gangopadhyay, R., & De, A. (2000). Conducting polymer nanocomposites: a brief overview. Chemistry of materials, 12(3), 608-622.
Fratoddi, I., Venditti, I., Cametti, C., & Russo, M. V. (2015). Chemiresistive polyaniline-based gas sensors: A mini-review. Sensors and Actuators B: Chemical, 220, 534-548.
Kotresh, S., Ravikiran, Y. T., SC, V. K., VV, R. C., & Batoo, K. M. (2017). Solution-based–spin cast processed LPG sensor at room temperature. Sensors and Actuators, A: Physical, 263, 687-692.
Patil, P. T., More, P. S., & Kondawar, S. B. (2020). LPG sensing properties of electrospun in-situ polymerized polyaniline/MWCNT composite nanofibers. In NAC 2019: Proceedings of the 2nd International Conference on Nanomaterials and Advanced Composites (pp. 3-18). Springer Singapore.
Das, T. K., & Prusty, S. (2013). Graphene-based polymer composites and their applications. Polymer-Plastics Technology and Engineering, 52(4), 319-331.
Zhang, Q., Li, Y., Feng, Y., & Feng, W. (2013). Electro polymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochimica Acta, 90, 95-100.
Lee, S. W., Lee, W., Hong, Y., Lee, G., & Yoon, D. S. (2018). Recent advances in carbon material-based NO2 gas sensors. Sensors and Actuators B: Chemical, 255, 1788-1804.
Guo, Y., Wang, T., Chen, F., Sun, X., Li, X., Yu, Z., ... & Chen, X. (2016). Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 8(23), 12073-12080.
Ghosh, D., Giri, S., Kalra, S., & Das, C. K. (2012). Synthesis and characterisations of TiO2 coated multiwalled carbon nanotubes/graphene/polyaniline nanocomposite for supercapacitor applications. Open Journal of Applied Sciences, 2(02), 70.
Thangamani, G. J., Deshmukh, K., Nambiraj, N. A., & Pasha, S. K. (2021). Chemiresistive gas sensors based on vanadium pentoxide reinforced polyvinyl 116687.alcohol/polypyrrole blend nanocomposites for room temperature LPG sensing. Synthetic Metals, 273,
Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206-217.
Yang, S., Ishikawa, Y., Itoh, H., & Feng, Q. (2011). Fabrication and characterization of core/shell structured TiO2/polyaniline nanocomposite. Journal of colloid and interface science, 356(2), 734-740.
Praveen, P., Viruthagiri, G., Mugundan, S., & Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol-gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 622-629.
Seekaew, Y., Pon-On, W., & Wongchoosuk, C. (2019). Ultrahigh selective room-temperature ammonia gas sensor based on tin–titanium dioxide/reduced graphene/ carbon nanotube nanocomposites by the solvothermal method. ACS omega, 4(16), 16916-16924.
Hashemi Karouei, S. F., Milani Moghaddam, H., & Saadat Niavol, S. (2021). Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity. Journal of Materials Science, 56, 4239-4253.
Yang, S., Ishikawa, Y., Itoh, H., & Feng, Q. (2011). Fabrication and characterization of core/shell structured TiO2/polyaniline nanocomposite. Journal of Colloid and Interface Science, 356(2), 734–740
Liu, A., Wang, C., Yang, X., Liu, F., Li, S., Wang, J. & Lu, G. (2020). Polyaniline@ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sensors and Actuators B: Chemical, 317, 128218.
Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., ... & Kim, K. S. (2012). Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical reviews, 112(11), 6156-6214.
Ramteke, J. N., Nerkar, N. V., & Kondawar, S. B. (2020). Comparative Study of Dye Removal Using PANI/TiO2 and PANI/GNS Nanocomposites. In NAC 2019: Proceedings of the 2nd International Conference on Nanomaterials and Advanced Composites (pp. 87-94). Springer Singapore.
Modak, P., Kondawar, S. B., & Nandanwar, D. V. (2015). Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Materials Science, 10, 588-594.
Chatterjee, S. G., Chatterjee, S., Ray, A. K., & Chakraborty, A. K. (2015). Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B: Chemical, 221, 1170-1181.
Patil, P. T., Anwane, R. S., & Kondawar, S. B. (2015). Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Materials Science, 10, 195-204.
Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO 2 gas–sensor applications: A review. Nano-Micro Letters, 7, 97-120.
Dhawale, D. S., Dubal, D. P., Jamadade, V. S., Salunkhe, R. R., Joshi, S. S., & Lokhande, C. D. (2010). Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sensors and Actuators B: Chemical, 145(1), 205-210.
Tai, H., Jiang, Y., Xie, G., Yu, J., & Chen, X. (2007). Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensors and Actuators B: Chemical, 125(2), 644-650.
Dhawale, D. S., Salunkhe, R. R., Patil, U. M., Gurav, K. V., More, A. M., & Lokhande, C. D. (2008). Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors and Actuators B: Chemical, 134(2), 988-992.
Patil, S. J., Lokhande, A. C., Yadav, A. A., & Lokhande, C. D. (2016). Polyaniline/Cu2 ZnSnS4 heterojunction-based room temperature LPG sensor. Journal of Materials Science: Materials in Electronics, 27, 7505-7508.
Albaris, H., & Karuppasamy, G. (2019). Fabrication of room temperature liquid petroleum gas sensor based on PANI–CNT–V2O5 hybrid nanocomposite. Applied Nanoscience, 9, 1719-1729.
Kotresh, S., Ravikiran, Y. T., SC, V. K., VV, R. C., & Batoo, K. M. (2017). Solution-based–spin cast processed LPG sensor at room temperature. Sensors and Actuators A: Physical, 263, 687-692.

Downloads
Published
How to Cite
License
Copyright (c) 2025 S D Rokade, D V Nandanwar, A M More, P A Bramhankar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright© by the author(s). Published by journal of Condensed Matter. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.