The Role of Chalcone Derivatives as Potential Antioxidant Additive for Biofuel Applications: A Critical Review

Authors

  • Sankaran Nampoothiri V Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara-690110, Kerala, India
  • Sunil Raj R Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara-690110, Kerala, India
  • Saji Chandran Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara-690110, Kerala, India
  • Lynnette Joseph Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara-690110, Kerala, India

DOI:

https://doi.org/10.61343/jcm.v3i02.139

Keywords:

Chalcone, Biofuels, Antioxidant property, Calorific value, Additive Application

Abstract

The world's energy demands have been rising to unprecedented levels due to the depletion of fossil resources and concerns about global warming. A potential remedy to these challenges is to investigate alternative bioenergy sources while also increasing the efficiency of existing biofuels. Biofuels are renewable energy sources since they are biodegradable fuels made from biomass. Notwithstanding the positive aspects of biofuels, their use can lead to issues such as poor oxidation, inherent stability, and limited energy supply, significantly impacting biofuel consumption, emissions, and energy efficiency. Small molecules, such as chalcone analogs, are good options for additive applications because they are versatile, easy to synthesize, inexpensive, integral materials across various applications, and provide energy for critical chemical reactions. Compounds with potential characteristics such as antioxidant activity and considerable energy availability are eligible to be used as fuel additives. The abundance of antioxidant properties of chalcone molecules is the most significant consideration in their use as additives for biofuels. Antioxidant additives offer numerous benefits, including the reduction of NOx emissions. The current review delves into the synthesis methods and performance of the chalcone molecule as an additive, including comprehensive information on antioxidant mechanisms, oxidation stability studies, antioxidant additives, and energy availability.

References

In Partnership with Statistical Review of World Energy 2023 | 72 Nd Edition.

Bp BP Statistical Review of World Energy June 2009; 2009.

Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A Technical and Environmental Comparison between Hydrogen and Some Fossil Fuels. Energy Convers Manag 2015, 89, 205–213, doi:10.1016/j.enconman.2014.09.057.

Vassilev, S. V.; Vassileva, C.G.; Vassilev, V.S. Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview. Fuel 2015, 158, 330–350.

Demirbas, A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers Manag 2008, 49, 2106–2116, doi:10.1016/j.enconman.2008.02.020.

Gaurav, N.; Sivasankari, S.; Kiran, G.S.; Ninawe, A.; Selvin, J. Utilization of Bioresources for Sustainable Biofuels: A Review. Renewable and Sustainable Energy Reviews 2017, 73, 205–214.

Weldemichael, Y.; Assefa, G. Assessing the Energy Production and GHG (Greenhouse Gas) Emissions Mitigation Potential of Biomass Resources for Alberta. J Clean Prod 2016, 112, 4257–4264, doi:10.1016/j.jclepro.2015.08.118.

Faria, E.C.M.; Duarte, V.S.; da Silva, A.M.; Fernandes, F.S.; de Paula, R.L.G.; Alonso, C.G.; Oliveira, G.R.; Napolitano, H.B. New Halogen Chalcone with Potential for Application in Biofuels. Energy & Fuels 2020, 34, 5958–5968, doi:10.1021/acs.energyfuels.0c00322.

Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A Comprehensive Review on the Environmental Impacts of Diesel/Biodiesel Additives. Energy Convers Manag 2018, 174, 579–614, doi:10.1016/j.enconman.2018.08.050.10.

Pikula, K.; Zakharenko, A.; Stratidakis, A.; Razgonova, M.; Nosyrev, A.; Mezhuev, Y.; Tsatsakis, A.; Golokhvast, K. The Advances and Limitations in Biodiesel Production: Feedstocks, Oil Extraction Methods, Production, and Environmental Life Cycle Assessment. Green Chem Lett Rev 2020, 13, 275–294, doi:10.1080/17518253.2020.1829099.

Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371, doi:10.1038/nature15371.

Naqvi, M.; Yan, J. First‐Generation Biofuels. In Handbook of Clean Energy Systems; Wiley, 2015; pp. 1–18.

Naik, S.N.; Goud, V. V.; Rout, P.K.; Dalai, A.K. Production of First- and Second-Generation Biofuels: A Comprehensive Review. Renewable and Sustainable Energy Reviews 2010, 14, 578–597.

Aghbashlo, M.; Tabatabaei, M.; Rastegari, H.; Ghaziaskar, H.S.; Valijanian, E. Exergy-Based Optimization of a Continuous Reactor Applied to Produce Value-Added Chemicals from Glycerol through Esterification with Acetic Acid. Energy 2018, 150, 351–362, doi:10.1016/j.energy.2018.02.151.

De Oliveira, F.C.; Coelho, S.T. History, Evolution, and Environmental Impact of Biodiesel in Brazil: A Review. Renewable and Sustainable Energy Reviews 2017, 75, 168–179, doi:10.1016/j.rser.2016.10.060.

Lim, S.; Teong, L.K. Recent Trends, Opportunities and Challenges of Biodiesel in Malaysia: An Overview. Renewable and Sustainable Energy Reviews 2010, 14, 938–954, doi:10.1016/j.rser.2009.10.027.

Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renewable and Sustainable Energy Reviews 2012, 16, 2070–2093, doi:10.1016/j.rser.2012.01.003.

Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D. Opportunities and Challenges for Biodiesel Fuel. Appl Energy 2011, 88, 1020–1031, doi:10.1016/j.apenergy.2010.09.029.

Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021, 11, 1203, doi:10.3390/biom11081203.

Mathew, B.; Adeniyi, A.A.; Joy, M.; Mathew, G.E.; Singh-Pillay, A.; Sudarsanakumar, C.; Soliman, M.E.S.; Suresh, J. Anti-Oxidant Behavior of Functionalized Chalcone-a Combined Quantum Chemical and Crystallographic Structural Investigation. J Mol Struct 2017, 1146, 301–308, doi:10.1016/j.molstruc.2017.05.100.

Kostanecki, S. and T., J Synthesis, Characterization and Biological Evaluation of Some Novel Chalcone Derivatives Containing Imidazo [1,2-a] Pyridine Moiety. J Chem Ber 1899, 32, 1921–1926.

Patel, Dr.R. Basics of Chalcone and Related Novel Synthesis. 2015.

Çeli̇k, M. Analysis of the Effect of N-Heptane and Organic Based Manganese Addition to Biodiesel on Engine Performance and Emission Characteristics. Energy Reports 2021, 7, 1672–1696, doi:10.1016/j.egyr.2021.03.024.

Senthil, R.; Silambarasan, R. Environmental Effect of Antioxidant Additives on Exhaust Emission Reduction in Compression Ignition Engine Fuelled with Annona Methyl Ester. Environ Technol 2015, 36, 2079–2085, doi:10.1080/09593330.2015.1021856.

Schober, S.; Mittelbach, M. The Impact of Antioxidants on Biodiesel Oxidation Stability. European Journal of Lipid Science and Technology 2004, 106, 382–389, doi:10.1002/ejlt.200400954.

Karavalakis, G.; Hilari, D.; Givalou, L.; Karonis, D.; Stournas, S. Storage Stability and Ageing Effect of Biodiesel Blends Treated with Different Antioxidants. Energy 2011, 36, 369–374, doi:10.1016/j.energy.2010.10.029.

Ramalingam, S.; Rajendran, S.; Ganesan, P. Improving the Performance Is Better and Emission Reductions from Annona Biodiesel Operated Diesel Engine Using 1,4-Dioxane Fuel Additive. Fuel 2016, 185, 804–809, doi:10.1016/j.fuel.2016.08.049.

Ashok, B.; Nanthagopal, K.; Jeevanantham, A.K.; Bhowmick, P.; Malhotra, D.; Agarwal, P. An Assessment of Calophyllum Inophyllum Biodiesel Fuelled Diesel Engine Characteristics Using Novel Antioxidant Additives. Energy Convers Manag 2017, 148, 935–943, doi:10.1016/j.enconman.2017.06.049.

Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A. Impacts of NOx Reducing Antioxidant Additive on Performance and Emissions of a Multi-Cylinder Diesel Engine Fueled with Jatropha Biodiesel Blends. Energy Convers Manag 2014, 77, 577–585, doi:10.1016/j.enconman.2013.10.016.

Kostopoulou, I.; Detsi, A. Recent Developments on Tyrosinase Inhibitors Based on the Chalcone and Aurone Scaffolds. Curr Enzym Inhib 2018, 14, 3–17, doi:10.2174/1573408013666170208102614.

Sökmen, M.; Akram Khan, M. The Antioxidant Activity of Some Curcuminoids and Chalcones. Inflammopharmacology 2016, 24, 81–86, doi:10.1007/s10787-016-0264-5.

Singh, S.; Sharma, P.K.; Kumar, N.; Dudhe, R. Journal of Advanced Scientific Research Anti-Oxidant Activity of 2-Hydroxyacetophenone Chalcone; 2011; Vol. 2.

Narsinghani, T.; Sharma, M.C.; Bhargav, S. Synthesis, Docking Studies and Antioxidant Activity of Some Chalcone and Aurone Derivatives. Medicinal Chemistry Research 2013, 22, 4059–4068, doi:10.1007/s00044-012-0413-3.

Berneira, L.M.; Rockembach, C.T.; da Silva, C.C.; de Freitas, S.C.; Rosa, B.N.; Pinto, E.; Anjos, F.M.; dos Santos, M.A.Z.; de Pereira, C.M.P. Employment of Thermal Analysis Applied to the Oxidative Stability Evaluation of Biodiesel Using Chalcone Analogues. J Therm Anal Calorim 2021, 146, 1473–1482, doi:10.1007/s10973-020-10189-w.

Prabhakar, V.; Iqbal, H.; Balasubramanian, R. Antioxidant Studies on Monosubstituted Chalcone Derivatives-Understanding Substituent Effects; 2016; Vol. 29.

Varatharajan, K.; Pushparani, D.S. Screening of Antioxidant Additives for Biodiesel Fuels. Renewable and Sustainable Energy Reviews 2018, 82, 2017–2028, doi:10.1016/j.rser.2017.07.020.

Coelho, E.; Faria, M.; Duarte, V.S.; Oliveira, A.M.; De, E.H.; Cavalcanti, S.; Napolitano, H.B. A Trimethoxy-Chalcone Applied as Antioxidant and Antibacterial Additive for Diesel and Biodiesel Blend.

Faria, E.C.M.; Duarte, V.S.; De Paula, R.L.G.; Da Silva, A.M.; Fernandes, F.S.; Vaz, W.F.; Oliveira, G.R.; Napolitano, H.B. Comparative Study of Chalcones and Their Potential as Additives for Biofuels. Energy and Fuels 2021, 35, 552–560, doi:10.1021/acs.energyfuels.0c03448.

Elfasakhany, A. Experimental Study on Emissions and Performance of an Internal Combustion Engine Fueled with Gasoline and Gasoline/n-Butanol Blends. Energy Convers Manag 2014, 88, 277–283, doi:10.1016/j.enconman.2014.08.031.

Bayraktar, H. Experimental and Theoretical Investigation of Using Gasoline-Ethanol Blends in Spark-Ignition Engines. Renew Energy 2005, 30, 1733–1747, doi:10.1016/j.renene.2005.01.006.

Yüksel, F.; Yüksel, B. The Use of Ethanol-Gasoline Blend as a Fuel in an SI Engine. Renew Energy 2004, 29, 1181–1191, doi:10.1016/j.renene.2003.11.012.

Chinna Babu, P.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E. FT-IR, FT-Raman Spectra, Density Functional Computations of the Vibrational Spectra and Molecular Geometry of Butylated Hydroxy Toluene. Spectrochim Acta A Mol Biomol Spectrosc 2011, 79, 562–569, doi:10.1016/j.saa.2011.03.034.

Krishna Kumar, V.; Suganya, S.; Mathammal, R. Molecular Structure, Vibrational Spectra, HOMO, LUMO and NMR Studies of 2,3,4,5,6-Penta Bromo Toluene and Bromo Durene Based on Density Functional Calculations. Spectrochim Acta A Mol Biomol Spectrosc 2014, 125, 201–210, doi:10.1016/j.saa.2013.12.070.

Mohammed, H.A.; Attia, S.K.; Nessim, M.I.; Shaaban, M.E.; El-Bassoussi, A.A.M. Studies on Some Thiazolidinones as Antioxidants for Local Base Oil. Egypt J Chem 2019, 62, 1619–1634, doi:10.21608/EJCHEM.2019.6662.1560.

Borges, I.D.; Faria, E.C.M.; Custódio, J.F.M.; Duarte, V.S.; Fernandes, F.S.; Alonso, C.G.; Sanches-Neto, F.O.; Carvalho-Silva, V.H.; Oliveira, G.R.; Napolitano, H.B. Insights into Chalcone Analogues with Potential as Antioxidant Additives in Diesel-Biodiesel Blends. RSC Adv 2022, 12, 34746–34759, doi:10.1039/d2ra07300e.

Duarte, V.S. chalconas e benzimidazóis: desenvolvimento de aditivos em misturas de biocombustíveis; 2023,

Duarte, V.S.; D. Borges, I.; d’Oliveira, G.D.C.; Faria, E.C.M.; de Almeida, L.R.; Carvalho-Silva, V.H.; Noda-Pérez, C.; Napolitano, H.B. Arylsulfonamide Chalcones as Alternatives for Fuel Additives: Antioxidant Activity and Machine Learning Protocol Studies. New Journal of Chemistry 2023, 47, 10003–10015, doi:10.1039/D3NJ00255A.

Moreira, C.A.; Faria, E.C.M.; Queiroz, J.E.; Duarte, V.S.; Gomes, M. do N.; da Silva, A.M.; de Paula, R.L.G.; Franco, C.H.J.; Cavalcanti, E.H. de S.; de Aquino, G.L.B.; et al. Structural Insights and Antioxidant Analysis of a Tri-Methoxy Chalcone with Potential as a Diesel-Biodiesel Blend Additive. Fuel Processing Technology 2022, 227, 107122, doi:10.1016/j.fuproc.2021.107122.

British Standards Institute staff Automotive Fuels Blends of Fatty Acid Methyl Ester (FAME) with Diesel Fuel. 1915.

Sallum, L.O.; Duarte, V.S.; Custodio, J.M.F.; Faria, E.C.M.; Da Silva, A.M.; Lima, R.S.; Camargo, A.J.; Napolitano, H.B. Cyclohexanone-Based Chalcones as Alternatives for Fuel Additives. ACS Omega 2022, 7, 11871–11886, doi:10.1021/acsomega.1c07333.

Uğuz, G.; Atabani, A.E.; Mohammed, M.N.; Shobana, S.; Uğuz, S.; Kumar, G.; Al-Muhtaseb, A.H. Fuel Stability of Biodiesel from Waste Cooking Oil: A Comparative Evaluation with Various Antioxidants Using FT-IR and DSC Techniques. Biocatal Agric Biotechnol 2019, 21, doi:10.1016/j.bcab.2019.101283.

Zuleta, E.C.; Baena, L.; Rios, L.A.; Calderón, J.A. The Oxidative Stability of Biodiesel and Its Impact on the Deterioration of Metallic and Polymeric Materials: A Review; 2012; Vol. 23.

Izgorodina, E.I.; Seeger, Z.L.; Scarborough, D.L.A.; Tan, S.Y.S. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem Rev 2017, 117, 6696–6754, doi:10.1021/acs.chemrev.6b00528.

Rad, A.S. Al-Doped Graphene as Modified Nanostructure Sensor for Some Ether Molecules: Ab-Initio Study. Synth Met 2015, 209, 419–425, doi:10.1016/j.synthmet.2015.08.016.

Diab, M.A.; El-Sonbati, A.Z.; El-Ghamaz, N.A.; Morgan, S.M.; El-Shahat, O. Conducting Polymers X: Dielectric Constant, Conduction Mechanism and Correlation between Theoretical Parameters and Electrical Conductivity of Poly (N,N′-Bis-Sulphinyl p-Phenylenediamine-2,6-Diaminipyridine) and Poly (N,N′-Bis-Sulphinyl p-Phenylenediamine-3,5-Diamine-1,2,4-Trizole). Eur Polym J 2019, 115, 268–281, doi:10.1016/j.eurpolymj.2019.03.036.

Yang, S.; Ye, C.; Song, X.; He, L.; Liao, F. ARTICLE TYPE Theoretical Calculations Based Synthesis of Poly(p-Phenylenediamine)-Fe3O4 Composite: A Magnetically Recyclable Photocatalyst with Highly Selectivity for Acid Dyes Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX., doi:10.1039/c0xx00000x.

Oliveira, L.E.; Da Silva M. L. C. P. Comparative Study of Calorific Value of Rapeseed, Soybean, Jatropha Curcas and Crambe Biodiesel. RE&PQJ 2024, 11, 679–682, doi:10.24084/repqj11.411.

Faria, E.C.M.; Duarte, V.S.; Da Silva, A.M.; Fernandes, F.S.; De Paula, R.L.G.; Alonso, C.G.; Oliveira, G.R.; Napolitano, H.B. New Halogen Chalcone with Potential for Application in Biofuels. Energy and Fuels 2020, 34, 5958–5968, doi:10.1021/acs.energyfuels.0c00322.

Covalcante, M. S. Conceicao, L. R. V. Bastos, R. R. C. Costa, A. C. G. Rocha F. N. Zamian,J. R. In 52nd Congresso Brasilerio de Quimica, Recife, Brazil. 2012, 14–18.

Antonio, M.; Nascimento, R.; Lora, E.S.; Venturini, O.J.; Maldonado, M.R.; Andrade, R.V.; Sérgio, P.; Corrêa, P.; Antônio, M.; Leite, H. Utilização Do Biodiesel de Mamona Em Micro-Turbinas a Gás-Testes de Desempenho Térmico e Emissões.

Downloads

Published

2025-05-04

How to Cite

1.
Nampoothiri V S, Sunil Raj R, Saji Chandran, Joseph L. The Role of Chalcone Derivatives as Potential Antioxidant Additive for Biofuel Applications: A Critical Review. J. Cond. Matt. [Internet]. 2025 May 4 [cited 2025 May 10];3(02):27-38. Available from: https://jcm.thecmrs.in/index.php/j/article/view/139

Issue

Section

Review Article

Categories