Review Study of Some Sillen Structure Chloride Phosphor Materials

Authors

  • Rashmi Pandey Saint Francis De Sales College Seminary Hills Nagpur, Maharashtra, India
  • Halim S. Ahamad Saint Francis De Sales College Seminary Hills Nagpur, Maharashtra, India
  • Supriya Kshetrapal Saint Francis De Sales College Nagpur, Maharashtra, India
  • Nilesh Ugemuge Anand Niketan College of Science, Arts and Commerce, Warora, Maharashtra, India

DOI:

https://doi.org/10.61343/jcm.v3i02.128

Keywords:

Silicates, Halides, Sillen structure chloride, Synthesis, Crystal structures & Luminescence

Abstract

Silicates and halides have long been recognized as effective luminescent materials, each with distinct advantages and disadvantages. Silicates are stable but require higher synthesis temperatures, while halides are more suitable for applications like optically stimulated luminescence and scintillation due to their lower melting points and the importance of defects and colour centres. However, most halides, except for fluorides, are quite hygroscopic, which can affect their stability in ambient conditions and necessitate protective measures. Sillen structure lattices present a promising alternative, as they can be synthesized at significantly lower temperatures than silicates and are less hygroscopic than their halide counterparts. Despite their potential, research on sillen structure has not been as extensive as that on silicates and halides. This review aims to summarize existing studies on the synthesis, crystal structures, and luminescence of various Sillen structure chloride phases, encouraging further research in this area.

References

Sharma, K., & Moharil, S. V. (2023), “Review of chlorosilicates as phosphor hosts”, Crystal Research and Technology, 58(1), 2200272. https://doi.org/10.1002/crat.202200272.

Sillen, L. G. (1941), Rontgenuntersuchung von Calcium/Wismutoxychloriden und -oxybromiden. Zeitschrift für anorganische und allgemeine Chemie, 248(1), 121.

https://doi.org/10.1002/zaac.19412480203.

Thomas, J. M., Ueda, W., Williams, J., & Harris, K. D. M. (1989), “New families of catalysts for the selective oxidation of methane”, Faraday Discussions of the Chemical Society, 87, 33. https://doi.org/10.1039/DC9898700033.

Burch, R., Chalker, S., Loader, P., Thomas, J. M., & Ueda, W. (1992), “Investigation of ethene selectivity in the methane coupling reaction on chlorine-containing catalysts”, Applied Catalysis A: General, 82(1), 77–90,

https://doi.org/10.1016/0926-860X(92)80185-9.

Blasse, G., & Bril, A. (1968), “Investigations on Bi³⁺-activated phosphors”, The Journal of Chemical Physics, 48(1), 217–222,

https://doi.org/10.1063/1.1667890.

Dieguez, E., Arizmendi, L., & Cabrera, J. M. (1985), “X-ray induced luminescence, photoluminescence, and thermoluminescence of Bi4Ge3O12”, Journal of Physics C: Solid State Physics, 18(24), 4777–4786. https://doi.org/10.1088/0022-3719/18/24/021.

Jacquier, B., Boulon, G., Sallavuard, G., & Gaume-Mahn, F. (1972), “Bi³⁺ center in a lanthanum gallate phosphor”, Journal of Solid-State Chemistry, 4(3), 374–378.

https://doi.org/10.1016/0022-4596(72)90152-1.

Kim, C.-H., Pyun, C.-H., Choi, H., & Kim, S.-J. (1999). “Luminescence of CaS:Bi”, Bulletin of the Korean Chemical Society, 20(3), 337–340, https://doi.org/10.5012/bkcs.1999.20.3.337.

Moncorgé, R., Jacquier, B., & Boulon, G. (1976), “Temperature dependent luminescence of Bi₄Ge₃O₁₂: Discussion of possible models”, Journal of Luminescence, 14(5–6), 337–348.

https://doi.org/10.1016/0022-2313(76)90003-X.

Shionoya, S., & Yen, W. M. (2000), “The phosphor handbook (Vol. 1)”, CRC Press.

https://doi.org/10.1201/9781420041552.

Weber, M. J., & Monchamp, R. R. (1973), “Luminescence of Bi₄Ge₃O₁₂: Spectral and decay properties”, Journal of Applied Physics, 44(12), 5495–5499. https://doi.org/10.1063/1.1662183.

Burch, R., Chalker, S., Loader, P. K., Thomas, J. M., & Ueda, W. (1992), “Investigation of ethene selectivity in the methane coupling reaction on chlorine-containing catalysts”, Applied Catalysis A: General, 82(1), 77–90,

https://doi.org/10.1016/0926-860X(92)80156-8.

Thomas, J. M., Ueda, W., Williams, J., & Harris, K. D. M. (1989), “New families of catalysts for the selective oxidation of methane”, Faraday Discussions of the Chemical Society, 87, 33–48. https://doi.org/10.1039/DC9898700033.

Charkin, D. O., Berdonosov, P. S., Dolgikh, V. A., & Lightfoot, P. (2003), “A reinvestigation of quaternary layered bismuth oxyhalides of the Sillen X1 type”, Journal of Solid-State Chemistry, 175(2), 316–321.

https://doi.org/10.1016/S0022-4596(03)00297-4.

Dolgikh, V. A., & Kholodkovskaya, L. N. (1992), “The crystal chemistry of layer metal oxide halides and oxide chalcogenides (Sillén phases)”, Russian Journal of Inorganic Chemistry, 37(5), 488–496.

Fray, S. M., Milne, C. J., & Lightfoot, P. (1997). “Synthesis and structure of CaBiO2Cl and SrBiO2Cl: New distorted variants of the Sillén X1 structure”, Journal of Solid-State Chemistry, 129(1), 115–120,

https://doi.org/10.1006/jssc.1996.7245.

Kennard, M. A., Darriet, J., Grannec, J., & Tressaud, A. (1995), “Cation ordering in the Sillén X1-type oxychloride, BaBiO2Cl”, Journal of Solid-State Chemistry, 117(1), 201–205,

https://doi.org/10.1006/jssc.1995.1263.

Sillen, L. G. (1939), “Uber die Struktur der Oxyhalogenide des dreiwertigen Bismuts”, Zeitschrift für anorganische und allgemeine Chemie, 242(1), 41–62,

https://doi.org/10.1002/zaac.19392420105.

Sillen, L. G. (1942), “Uber die Kristallstruktur von BiOCl”, Naturwissenschaften, 22(15), 318–319. https://doi.org/10.1007/BF01475647.

Olchowka, J., Kabbour, H., Colmont, M., Adlung, M., Wickleder, C., & Mentre, O. (2016), “ABiO2X (A = Cd, Ca, Sr, Ba, Pb; X = Halogen) Sillen X1 series: Polymorphism versus optical properties”, Inorganic Chemistry, 55(14), 7009–7018.

https://doi.org/10.1021/acs.inorgchem.6b01024.

Huang, H., Wang, S., Zhang, Y., & Han, X. (2015), “MBiO2Cl (M = Sr, Ba) as novel photocatalysts: Synthesis, optical property, and photocatalytic activity”, Materials Research Bulletin, 62, 206–211. https://doi.org/10.1016/j.materresbull.2014.11.032.

Lin, X.-P., Huang, F.-Q., Wang, W.-D., Shan, Z.-C., & Shi, J.-L. (2008), “A series of Bi-based oxychlorides as efficient photocatalysts”, Key Engineering Materials, 368–372, 1503–1506. https://doi.org/10.4028/www.scientific.net/KEM.368-372.1503.

Zhang, Z., & Liang, Y. (2022), “Synthesis and upconversion luminescence properties of BaBiO₂Cl:Yb³⁺, Er³⁺ phosphor”, Crystals, 12(10), 1465. https://doi.org/10.3390/cryst12101465.

Porter-Chapman, Y., Bourret-Courchesne, E., & Derenzo, S. E. (2008), “Bi³⁺ luminescence in ABiO2Cl (A = Sr, Ba) and BaBiO2Br”, Journal of Luminescence, 128, 87–91,

https://doi.org/10.1016/j.jlumin.2007.05.007.

Peng, J., Peng, Y., Wang, T., Wu, Z., Wang, Q., Li, Y., Yin, Z., Han, J., Qiu, J., Yang, Z., & Song, Z. (2022), “Enhanced UV–Vis–NIR photocatalytic activity of La-doped BaBiO2Cl: Role of oxygen vacancies”, Journal of Solid-State Chemistry, 314, 123381, https://doi.org/10.1016/j.jssc.2022.123381.

Shi, R., Xu, T., Zhu, Y., & Zhou, J. (2012), “High photocatalytic activity of oxychloride CaBiO2Cl under visible light irradiation”, CrystEngComm, 14, 6257–6263, https://doi.org/10.1039/c2ce25672j.

Feng, Y., Huang, W., Hu, C., Zhao, W., Jiao, P., Zhong, Y., & Zhou, H. (2014), “Preparation of Ag-modified CaBiO₂Cl and its photocatalytic ability under visible light”, Advanced Materials Research, 955–959, 120–126.

https://doi.org/10.4028/www.scientific.net/AMR.955-959.120.

Zhu, B.-Q., Hu, C.-H., Feng, Y., Yin, X.-H., Zhong, Y., & Zhou, H.-Y. (2015), “Synthesis and photocatalytic activity of M-doped CaBiO2Cl (M = Ag, Co, and Ni) under visible light”, ICMSA 2015 Conference Proceedings,

https://doi.org/10.2991/icmsa-15.2015.118.

Fray, S. M., Milne, C. J., & Lightfoot, P. (1997), “Synthesis and structure of CaBiO2Cl and SrBiO2Cl: New distorted variants of the Sillén X1 structure”, Journal of Solid-State Chemistry, 128, 115–120, https://doi.org/10.1006/jssc.1996.7229.

Suzuki, H., Kunioku, H., Higashi, M., Tomita, O., Kato, D., Kageyama, H., & Abe, R. (2018), “Photocatalytic water oxidation by a Sillén-related oxychloride PbBiO2Cl”, Chemistry of Materials, 30, 5862–5869, https://doi.org/10.1039/d3ta00906h.

Downloads

Published

2025-05-04

How to Cite

1.
Pandey R, Ahamad HS, Kshetrapal S, Ugemuge N. Review Study of Some Sillen Structure Chloride Phosphor Materials. J. Cond. Matt. [Internet]. 2025 May 4 [cited 2025 May 10];3(02):17-20. Available from: https://jcm.thecmrs.in/index.php/j/article/view/128

Issue

Section

Review Article

Categories