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Abstract 

This research investigates the critical mass thresholds for black hole formation during the gravitational collapse of massive stars. 

Using numerical simulations and analytical techniques, we model the collapse of spherically symmetric, non-rotating neutron stars 

by solving the Tolman-Oppenheimer-Volkoff (TOV) equation. We first derive an analytical solution for the TOV equation under the 

assumption of constant density, estimating the maximum neutron star mass to be 2.85 solar masses. We then incorporate a customized 

density profile, as predicted in our previous work, into the TOV framework. This yields a critical mass of 2.096 solar masses at a 

radius of approximately 10 km, consistent with current theoretical and observational expectations. The maximum stable mass with 

this profile is calculated to be 2.36 solar masses, with the mass decreasing to zero beyond 15.5 km. By analyzing different initial 

masses (2.0, 4.0, and 8.0 solar masses) using a polytropic equation of state (EOS), we examine the mass-radius and pressure-radius 

relationships. Our results reveal a highly non-linear and abrupt change in mass and pressure distributions, indicating the formation 

of a dense outer shell. This structural feature could significantly influence neutron star stability and the conditions leading to black 

hole formation. These findings provide valuable insights into the maximum mass limits of neutron stars, aiding in the interpretation 

of astrophysical observations and the identification of potential black hole progenitors. 
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Introduction 

The probability of existence of neutron star was predicted 

by scientists after the discovery of neutron by Chadwick in 

1932. Among them pioneers were Lev Landau, Walter 

Baade and Fritz Zwicky (1936). They believed that during 

supernova explosion of a main sequence star of more than 

10 solar mass, neutron star might be formed. However, the 

history of observation of neutron star begins in 1967 when 

Jocelyn Bell and her advisor Anthony Hewish discovered 

radio pulsar (PSR B1919+21) at Cambridge. Various 

observation and theoretical prescriptions now lead us to 

believe that pulsars are actually rapid rotating neutron stars. 

It is difficult to detect any non-rotating neutron star. So, 

analyzing the radiation emitted by pulsars, properties of 

neutron stars can be predicted. In 1939 Oppenheimer and E. 

Salpeter along with different theoreticians realized that like 

white dwarf, neutron star might have an upper mass limit. 

Oppenheimer and Volkoff derived an equation of 

hydrostatic equilibrium of star by using general theory of 

relativity, as they believed that general theory of relativity 

might be more fruitful than Newtonian mechanics. They 

calculated the limiting mass of a neutron star to be 0.7 solar 

mass [1]. This result seemed to be very low, as it is very 

much expected that the maximum mass of a neutron star 

should at least exceed the Chandrasekhar mass limit of 1.4 

solar mass [2]. The strong repulsive nuclear force acting 

between neutrons probably increases the upper mass limit 

of a neutron star. Different stellar observation of pulsars 

leads to an idea, that maximum mass of neutron star may lie 

between 1.4 to 3.0 solar mass. Integrating equation of 

equilibrium, Rhoades and Ruffini [3] found that the 

maximum mass of neutron star to be 3.2 solar mass. 

Nauenberg and Chapline (1973) [4] found this to be 3.6 

solar mass. Rotating neutron stars may have higher mass 

limit. Hartle and Sabbadini (1977) [5] introduced an 

empirical relation for non-rotating neutron star as, 

𝑀bound = 11.4𝑀⊙ (
1017

𝜌0
)

1
2

 (1) 

 Friedman and Ipser (1987) [6] have derived an empirical 

relation for rotational neutron star as, 
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𝑀MAX
ROT = 14.3𝑀⊙ (

1017

𝜌0
)

1
2

 (2) 

If we use polytrope stellar model with n=1.5, numerically a 

standard relation [7] can be employed for evaluating mass 

of neutron star from 𝑀𝑅3 = constant as, 

𝑀 = 1.102 (
𝜌0
1018

)

1
2
𝑀⊙ = (

15.12𝐾𝑚

𝑅
)
3

𝑀⊙ (3) 

 

𝑅 = 14.64 (
𝜌0
1018

)
−
1
6
 (4) 

In equations (1), (2), (3), and, (4) ρ0 (density) and R (radius) 

of neutron star are measured in Kg/m3 and in Km 

respectively. Whatever be the nature of equation of state, 

the maximum mass of a neutron star must be greater than 

1.4 solar mass [8]. It is expected that at the end point of 

stellar evolution, if the core of the star contains carbon or 

heavier element then there is every possibility that the 

remnant star might be transformed to neutron star. To retain 

stability of neutron star, it has a critical mass threshold, 

beyond which it would be collapsed to a black hole.  

Methodology 

In this work we have used the following equations as per 

requirement. Equation of Hydrostatic Equilibrium [9]: 

𝑑𝑝(𝑟)

𝑑𝑟
= −

𝐺𝑚(𝑟)𝜌(𝑟)

𝑟2
 (5) 

TOV Equation [10]: 

𝑑𝑝(𝑟)

𝑑𝑟
= −

𝐺 [𝑚(𝑟) + 4𝜋𝑟3
𝑝(𝑟)
𝑐2

] [𝜌(𝑟) +
𝑝(𝑟)
𝑐2

]

𝑟2 [1 −
2𝐺𝑚(𝑟)
𝑐2𝑟

]
 (6) 

Mass profile of star (Equation of Continuity) [9]: 

𝑑𝑚(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) (7) 

Customized Density profile [11]: 

𝜌(𝑟) = 𝜌0 (1 −
𝑟2

𝑅2
) (8) 

Non-relativistic degeneracy pressure of neutron star [10] 

𝑃 = 0.542 × 104𝜌0
5 3⁄

     (S. I. Unit) (9) 

Relativistic degeneracy pressure of neutron star [10] 

𝑃 = 1.235 × 1010𝜌0
4 3⁄

   (S. I. Unit) (10) 

Analytical Solution of TOV Equation 

Let us start with the TOV equation as, 

𝑑𝑝

𝑑𝑟
= −

𝐺

𝑟2
[𝜌 +

𝑝

𝑐2
] [𝑚(𝑟)

+
4𝜋𝑟3𝑝

𝑐2
] [1 −

2𝐺𝑚(𝑟)

𝑐2𝑟
]

−1

 

(11) 

As we do not have any authentic equation of state of neutron 

star, it is almost impossible to solve this equation 

analytically. So, to solve it analytically, we have assumed 

here that the density of the relevant star is constant (ρ = 

constant). As density is constant, we can write, 𝑚(𝑟) =

(4 3⁄ )𝜋𝑟3𝜌. So, TOV equation becomes, 

𝑑𝑝

𝑑𝑟
= −

𝐺𝑚(𝑟)𝜌

𝑟2
[1 +

𝑝

𝜌𝑐2
] [1

+
3𝑝

𝜌𝑐2
] [1 −

2𝐺𝑚(𝑟)

𝑐2𝑟
]

−1

 

(12) 

Let, 
𝑝

𝜌𝑐2
= 𝑥 , and 

2𝐺𝑚(𝑟)

𝑐2𝑟
= 𝑦,  then we have, 

𝑑𝑥

𝑑𝑟
= −

𝑦

2𝑟
(1 + 𝑥)(1 + 3𝑥)(1 − 𝑦)−1 (13) 

Now, from  𝑦 =
2𝐺𝑚(𝑟)

𝑐2𝑟
,  it follows: 

𝑑𝑦

𝑑𝑟
=
8𝜋𝐺𝜌

3𝑐2
2𝑟 =

𝑦

𝑟2
2𝑟 =

2𝑦

𝑟
 (14) 

Now,  

𝑑𝑥

𝑑𝑟
=
𝑑𝑥

𝑑𝑦

𝑑𝑦

𝑑𝑟
=
𝑑𝑥

𝑑𝑦

2𝑦

𝑟
 (15) 

Hence TOV equation takes the form, 

𝑑𝑥

(1 + 𝑥)(1 + 3𝑥)
= −

𝑑𝑦

4(1 − 𝑦)
 (16) 

Integrating, 

𝑙𝑛 (
1 + 𝑥

1 + 3𝑥
) = −

1

2
𝑙𝑛(1 − 𝑦) + 𝑘 (17) 

Here k is the constant of integration. At the surface of the 

star, pressure is zero (boundary condition), so that, p=0 

(x=0) at r=R 

Let us take at r=R, 𝑦 = 𝑦0 =
2𝐺𝑀

𝑐2𝑅
 where, M is the mass of 

the star and R being the radius. 

So, we get, 𝑘 =
1

2
𝑙𝑛(1 − 𝑦0) 

Now, the solution becomes on simplification, 

𝑥 =
√1 − 𝑦0 −√1 − 𝑦

√1 − 𝑦 − 3√1 − 𝑦0
 (18) 

At centre of the star, r=0, so, y=0, then let 𝑥 = 𝑥0 (boundary 

condition). Central pressure of the star can now be 

expressed as, 𝑝0 = 𝜌𝑐2𝑥0. Again, 𝑥0 =
√1−𝑦0−1

1−3√1−𝑦0
 

Therefore, 

𝑝0 = 𝜌𝑐2 [
√1 − 𝑦0 − 1

1 − 3√1 − 𝑦0
] (19) 

Now, if the denominator of the above expression is zero, 

then central pressure goes to infinity and the star cannot 

maintain its stability, it will be gravitationally collapsed to 
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a black hole. This scenario will occur when,  3√1 − 𝑦0 = 1 

or,  𝑦0 =
8

9
,  

Hence,  
2𝐺𝑀

𝑐2(
3𝑀

4𝜋𝜌
)

1
3

=
8

9
 

On simplification it follows [10]: 

𝑀 = [
4𝑐3

√243𝜌𝜋𝐺3
] (20) 

 

Numerical Solution of the TOV Equation 

To solve the TOV equation for stellar structure 

numerically, we implemented a Python script using the 

Runge-Kutta method (RK45). The TOV equation models 

the relationship between the mass (m) and pressure (P) as a 

function of the radius (r). We used the 

scipy.integrate.solve_ivp() function, which applies as 

stepsize RK45 solver, ensuring accuracy and efficiency. 

The differential equations were solved over a radial range 

[10-5, R] with an initial central mass m0 and pressure P0 =10-

2. To prevent unphysical solutions, we introduced a 

pressure threshold event that stops the integration when 

the pressure drops below 10-10, marking the surface of the 

star. The relationship between pressure P and density ρ is 

modeled using the polytropic equation of state: 

𝑃 = 𝐾𝜌𝛾 = 𝐾𝜌
(1+

1
𝑛
)
 (21) 

where, K is the Polytropic constant, determined by the star's 

initial conditions, Adiabatic index is γ, and n is the 

Polytropic index. n = 3 stands for relativistic degenerate 

matter, and n=1.5 for non-relativistic degenerate matter. For 

this study, we have used a polytropic index n = 3 or γ=4/3 

[12] which is appropriate for relativistic stars composed of 

degenerate matter. 

Finally, we plotted the mass and pressure profiles for 

different initial masses as 2.0, 4.0, and 8.0 solar mass, 

demonstrating how the stellar structure changes with 

varying central mass. The boundary conditions employed 

as, at the core (r = 0), m(0) = 0, P(0) = PC (central pressure), 

and at the surface (r = R), P(R) = 0, where R is the star's 

radius.  

Results 

1. Mass and radius profile for different initial masses  

 

The figure 1 illustrate the Mass and Pressure profiles for 

different initial masses m0 as a function of the radius 𝑅⊙. 

These visual aids are essential for clear understanding of the 

relation between mass, radius, and pressure distribution in 

the modeled system. The left panel of figure 1 shows the 

mass distribution as a function of the radial coordinate  

 

Figure 1: Mass and pressure profile for different initial masses 

using TOV and polytrope equation. 

𝑅⊙revealing that higher mass cores exhibit steeper 

gradients near their surfaces, indicative of more 

concentrated mass distribution. The right panel shows the 

pressure profile for the same cores, demonstrating that as 

the initial mass increases, the central pressure grows 

significantly, which is a critical factor in determining the 

stability of the core. Mass radius and pressure radius profile 

of a star depends on its initial mass. The TOV equation (6) 

describes the pressure gradient inside the relativistic star, 

balancing pressure support and gravitational pull. This 

equation ensures hydrostatic equilibrium, where the 

outward pressure gradient counteracts the inward 

gravitational pull. The mass continuity equation (7) relates 

the mass distribution to the radial density profile.  

Mass Profile: The mass profile exhibits the following 

findings: 

Inner Core Uniformity: For small radii, the mass remains 

nearly constant which indicates a dense, uniform core 

structure across all initial mass configurations. For initial 

mass 2𝑀⊙, mass remains constant up to 0.125𝑅⊙, For 

4𝑀⊙  it remains constant up to 0.225𝑅⊙, and for 8𝑀⊙ it is 

up to 0.275𝑅⊙. This uniformity is a consequence of the 

balance between gravitational and pressure forces within 

the dense core, where the polytropic equation of state 

enforces nearly constant density.  

Outer Layers: Beyond the core region, the mass increases 

steeply, reflecting a rapid transition to less dense outer 

layers. The final masses and radii for the different 

configurations are: 

For, the initial mass  2𝑀⊙ final mass is 14.5𝑀⊙ at  

0.207𝑅⊙ 

For, the initial mass  4𝑀⊙ final mass is 27.7𝑀⊙ at  

0.251𝑅⊙ 

For, the initial mass  8𝑀⊙ final mass is 53.5𝑀⊙ at  

0.304𝑅⊙ 
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This steep behavior suggests that while the core holds a 

smaller fraction of the total mass, the outer regions of the 

star contribute significantly to the total mass. Furthermore, 

a linear relationship is observed between the final mass and 

the initial mass of the star. This proportionality suggests that 

for the given initial conditions and polytropic index, the 

total mass scales linearly with the initial core mass, though 

this relationship may vary with different polytropic indices 

or initial conditions. 

Pressure Profile: The pressure profiles show marked 

transition: 

Low-Pressure Core: For small radii, pressure is relatively 

low, supporting the uniform core structure. 

High-Pressure Outer Layers: Pressure rises sharply 

beyond the core: For the initial mass 2𝑀⊙ peak pressure is 

1.3 × 1016𝑃𝑎 at  radius 0.205𝑅⊙, for the initial mass 4𝑀⊙ 

peak pressure is 1.1 × 1016𝑃𝑎 at radius  0.250𝑅⊙, and for 

the initial mass 8𝑀⊙ peak pressure is 1.4 × 1016𝑃𝑎 at 

radius  0.305𝑅⊙. 

2. Solution of Hydrostaic equation and density profile 

We investigate the mass limit and properties of neutron stars 

by solving the hydrostatic equilibrium equation using a 

customized density profile [11]. The degeneracy pressures 

for non-relativistic and relativistic regimes are incorporated 

into the analysis [10,11]. In the previous study, the mass-

radius relation for neutron stars was investigated using the 

hydrostatic equilibrium (HE) equation in conjunction with 

a specific density profile. While this approach provided 

initial insights, it became evident that the HE equation alone 

fails to fully capture the relativistic effects essential for 

accurately modeling compact objects like neutron stars. For 

instance, the relation 𝑀𝑅3 = 1.5 × 1042, derived under 

simplified assumptions, predicts a decreasing mass with 

increasing radius as shown below (Figure 2). 

 

Figure 2: Mass Profile from Analytical Solution using equation of 

HE, Density Profile, and Degenerate Pressure 

Analytical and numerical solution obtained as follows:       

1. Analytical Calculation: Using degeneracy pressure for 

the core neutrons, the maximum mass of the neutron star 

was calculated analytically as 𝑀max = 2.75𝑀⊙ [11]. 

2. Numerical Simulation: The numerical integration of the 

mass continuity equation with the density profile as shown 

in Figure 2 rose monotonically with the radius, reaching 

𝑀 = 2.84𝑀⊙ for R=15Km. This result is slightly higher 

than the analytically predicted maximum mass. 

 

Figure 3: Mass Profile from Numerical Solution using equation 

of HE, Density Profile, and Degenerate Pressure. 

3. TOV Equation and Density Profile  

We have here Introduced the significance of neutron stars, 

emphasizing their unique structure governed by degeneracy 

pressure and gravitational forces. We have highlighted the 

existing mass limits (TOV limit) and the theoretical 

refinement using different density profiles. Starting from 

equation (20), we can write the relation as: 

𝑀 =
7.175 × 1039

√𝜌
kg =

3.61 × 109

√𝜌
𝑀⊙ (22) 

Where, 𝑀⊙  is the solar mass. The challenge here is 

selecting a suitable value for ρ , the density. Assuming the 

neutron star’s density is analogous to that of a neutron, we 

estimate ρ using the  

relation 𝜌 = 2
𝑚𝑛
4

3
𝜋𝑟𝑛

3
, where 𝑚𝑛 kilogram is the mass of a 

neutron and 𝑟𝑛 ≈ 10−15 meters is the neutron radius. This 

yields a neutron star density of approximately 8 ×

1017kg/m
3
. Applying this density in the mass-density 

relation from equation (20), the calculated maximum mass 

of a neutron star is about 4.036𝑀⊙ , which notably exceeds 

experimental values. 

4. Stability of neutron star dependence on density 
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Figure 4: Dependence of Maximum Mass on Density using the 

TOV Solution.  

Figure 4 illustrates the relationship between the maximum 

mass and density, based on this TOV solution.  The plot 

shows that the limiting mass of neutron star to retain 

stability gets reduced with the increase of density of neutron 

star. At density greater than5 × 1018Kg/m
3
 mass limit is 

less than 1.4𝑀⊙ (Chandrasekhar mass limit of White 

Dwarf). This can not be the real scenario of existence of 

neutron star. So, neutron star might also possess a limiting 

density less than  5 × 1018kg/m
3
 to retain stability as 

obtained in this approximate solution of TOV equation 

considering density to be constant. 

5. Mass limit of neutron star using TOV and density 

profile 

Finally, we assume a central pressure of 1.2 × 1034Pa for 

the neutron star on the eve of collapsing, leading to an 

estimated maximum density of 1.6 × 1018Kg/m
3
. 

Substituting this density into equation (20) the resulting 

maximum mass for a neutron star is estimated 

approximately as 2.85𝑀⊙  , aligning more closely with the 

observational constraints.  Further, by incorporating our 

predicted density profile (equation 8) into the TOV equation 

(equation 6) and running a Python simulation to plot 

limiting mass of neutron star vs its radius, we obtain a 

critical mass of 2.096𝑀⊙   and a critical radius of 10.5 Km, 

with a maximum mass of 2.36𝑀⊙    as shown in Figure 5. 

   

Figure 5: Mass Profile from Numerical Solution using TOV, 

Density Profile, and Degenerate Pressure. 

Critical mass is defined as the limit for non-rotating neutron 

stars, beyond which neutron stars collapse into black holes, 

on the other hand maximum mass is the highest mass a 

neutron star that can be achieved before collapsing in black 

hole, potentially increased by factors like rotation. Figure 5 

indicates an upper mass limit of neutron star, beyond which 

mass gets decreased to zero. This means that there might be 

an upper limit of radius of neutron star, no neutron star with 

greater radius than this upper limit can exist in nature which 

should be around 15 Km. 

Discussion 

1. Mass and Radius Profile for Different Initial Masses 

The variation in peak pressure with initial stellar mass can 

be attributed to differences in density gradients and the 

relation between gravitational and pressure forces. The 

numerical results, based on the TOV equation and the 

polytropic equation of state, reveal the following key 

findings: 

A linear scaling of the maximum mass with the initial core 

mass is observed, along with transition zones in both the 

mass and pressure profiles. These transition zones separate 

the uniform core from the steep outer gradients. The 

pressure profile shows distinct behavior with varying initial 

masses: When the initial mass increases from 2.0 to 4.0 

solar masses, the peak pressure decreases. However, when 

initial mass increases further to 8.0 solar masses, the peak 

pressure increases. This discrepancy is likely due to 

transition phenomena within the stellar structure. For the 

4.0 solar mass configuration, the density gradient creates a 

more gradual transition in density, resulting in a lower peak 

pressure. In contrast, at 8.0 solar masses, the higher overall 

density leads to an elevated peak pressure.  

The influence of the polytropic index (γ = 4/3), 

characteristic of relativistic degenerate matter, plays a 

critical role in the pressure-density relationship. This index 

significantly affects the pressure variance across different 

mass profiles. These mass and radius profiles illustrate how 

increasing central pressure and mass concentration 

destabilize the stellar core, eventually exceeding the critical 

thresholds for neutron star stability. They also provide 

comparative visualizations that indicate the conditions 

under which a collapsing core transitions into a black hole. 

Thus, this analysis offers valuable insights into the internal 

structure of stars and helps to determine critical mass 

thresholds, bridging the gap between theoretical models and 

observed gravitational collapse phenomena. 

2. Solution of the Hydrostatic Equation and Density 

Profile 

The observed discrepancy between the numerical 
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simulation and the analytical results can be explained by 

several factors: 

Simplified Density Profile: The numerical simulation uses 

a prescribed density profile without feedback from the 

pressure or a realistic equation of state (EoS), limiting its 

accuracy. 

Lack of Instabilities: The non-relativistic framework does 

not account for gravitational instabilities, which are 

essential for predicting the maximum mass and its 

subsequent decrease. 

Relativistic Effects: Analytical calculations include 

relativistic effects through the EoS for neutron degeneracy 

pressure. These effects govern the balance between gravity 

and degeneracy pressure, enabling the prediction of the 

maximum stable mass. 

Limitations and Implications 

The primary limitation of this approach is its inability to 

capture the realistic mass decrease beyond the maximum 

stable configuration observed in the analytical results. This 

shortcoming arises due to the absence of relativistic 

corrections to gravity and pressure. Additionally, feedback 

mechanisms between pressure and density are neglected, 

and the simplified density profile does not accurately reflect 

the complex internal structure of neutron stars. While the 

non-relativistic numerical simulation provides qualitative 

insights into the mass-radius relation, it fails to capture the 

maximum mass and its subsequent decrease caused by 

gravitational instability. However, the results remain 

consistent with observational constraints and offer valuable 

insights into the transition between non-relativistic and 

relativistic regimes in neutron star cores. 

3. Mass Limit of Neutron Stars Using the TOV Equation 

and Density Profile  

The results demonstrate that solving the mass-continuity 

equation numerically with the same density profile yields 

an increasing mass with radius, reflecting the realistic 

accumulation of matter within the star. However, this trend 

exposes the limitations of the Hydrostatic Equilibrium 

(HE) framework in high-density regimes. 

The discrepancy arises because the HE equation neglects 

relativistic effects, such as spacetime curvature and 

relativistic pressure gradients, which become significant in 

dense astrophysical systems. To overcome these 

limitations, we incorporated the TOV equation, which 

extends the HE framework by including general relativistic 

effects. 

By applying the TOV equation to the same density 

profile: The inconsistencies observed with the equation 

were resolved. The results aligned more closely with 

realistic neutron star physics. The corrected mass-radius 

relation provided deeper insights into the interrelation 

between gravitational and pressure forces within neutron 

stars.  

Neutron Star Mass Constraints 

The observed maximum mass of neutron stars is indeed 

close to 2.08 solar masses, with one of the most massive 

confirmed examples being PSR J0740+6620, measured at 

approximately 2.08–2.17 solar masses [13]. Some models 

suggest that the true upper limit for neutron star masses may 

lie between 2 and 3 solar masses. The discrepancy between 

different models arises from the uncertainty in the 

equation of state for neutron stars. Despite significant 

progress in modeling, the exact EoS remains uncertain, as 

the innermost core of neutron stars is still not fully 

understood. 

Conclusion 

This study presents a comprehensive numerical analysis of 

the Tolman-Oppenheimer-Volkoff (TOV) equations, 

coupled with various density profiles, to investigate the 

critical mass and structural properties of neutron stars. The 

findings highlight the intricate relationship between mass, 

pressure, and radius in determining the stability of 

relativistic stars. Specifically, the results reveal significant 

non-linearities in the mass and pressure distributions, 

suggesting the potential existence of a dense outer shell 

within the stellar structure. These features may indicate 

underlying physical phenomena, such as phase transitions 

or variations in the equation of state (EoS) at high 

densities. Throughout this study, different methods were 

employed to estimate the maximum mass limit of a 

neutron star before it undergoes gravitational collapse into 

a black hole or another compact object. The key conclusions 

derived from the analyses are summarized as follows: 

1. Equation of Hydrostatic Equilibrium: Analytical 

calculations of the hydrostatic equilibrium (HE) equation, 

combined with a customized density profile, yielded a 

maximum neutron star mass of approximately 2.75 solar 

masses. Numerical simulations, based on integrating the 

mass-continuity equation with the same density profile, 

produced a consistent maximum mass estimate of 2.84 

solar masses. 

2. Constant Density Model: By solving the TOV equations 

with a constant density as 1.6 × 1018Kg/m
3
, the 

maximum mass was determined to be approximately 2.85 

solar masses. This result aligns closely with the theoretical 

predictions by Hartle and Sabbadini (1977), 

demonstrating the reliability of the TOV framework when 
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applied to simple density assumptions. 

 3. Customized Density Profile: Introducing the predicted 

density profile into the TOV equations yielded a critical 

mass of approximately 2.09 solar masses at a radius of 

around 10 km. The maximum mass was calculated as 2.36 

solar masses with the stellar mass density tapering to zero 

at a radius of 15.5 km. This customized approach provided 

a refined understanding of the EoS for neutron stars, 

enabling more precise estimates of critical mass 

thresholds.  

4. Implications and Consistency with Observations: 

Based on these findings, we conclude that a neutron star is 

likely to lose stability and collapse into a black hole or 

another compact object once it surpasses a mass of 

approximately 2.09 solar masses. This conclusion is 

consistent with empirical findings, such as the upper mass 

limit established by researchers at Goethe University 

Frankfurt (January 16, 2018), who determined that the 

maximum mass of a neutron star cannot exceed 2.16 solar 

masses. 

While the possibility of extremely massive neutron stars 

beyond 2.3 solar masses cannot be entirely ruled out [14], 

the results presented here align well with current 

experimental and observational constraints, providing a 

robust approximation of the maximum mass limit for 

neutron stars. 

The estimated 2.09 solar mass limit is consistent with both 

recent observational data and current theoretical models. 

Observations of the most massive neutron stars, such as: 

PSR J0952-0607 (2.35𝑀⊙) [15] and PSR J0348+0432 

(2.01𝑀⊙ ) [16] demonstrate that neutron stars can indeed 

reach or exceed this mass threshold. 

Additionally, theoretical models indicate that the maximum 

gravitational mass for non-rotating neutron stars is 

approximately 2.25 ± 0.07𝑀⊙ , further supporting the 

plausibility of the limit obtained in this study. 

5. Population Studies and EoS Constraints: Population 

studies reveal that while most neutron stars cluster around 

1.35–1.50𝑴⊙ , those in high-mass X-ray binaries or 

millisecond pulsars tend to be more massive, often 

exceeding 2.0𝑴⊙ . The mass limit of 2.09𝑴⊙  fits well 

within this observational range, aligning with the most 

massive confirmed neutron stars. 

The maximum neutron star mass also serves as a crucial 

observational constraint on the EoS of dense matter. 

Recent measurements of neutron stars with masses close to 

2.0𝑀⊙  have ruled out many softer EoS models, suggesting 

that the maximum mass likely lies between 2.2 and 2.9𝑀⊙  

(Özel & Freire, 2016) [17]. Given the observational and 

theoretical constraints, a maximum neutron star mass of 

approximately 2.09 solar masses emerges as a reasonable 

and well-supported upper limit. This value is consistent 

with current astrophysical observations and aligns with 

established theoretical models, lending credibility to its 

scientific validity. The conclusion is further reinforced by 

peer-reviewed references, affirming that 2.09 solar masses 

represent a justifiable estimate for the maximum mass of 

neutron stars. 

Implications and Future Work 

These findings concentrate on the need for more 

sophisticated theoretical models that account for the 

influences of gravitational, nuclear, and quantum forces 

under relativistic conditions on such compact stars. Future 

works will focus on additional complexities to refine these 

models further. For instance, the inclusion of phase 

transitions in dense anisotropic pressure models, and the 

effects of strong magnetic matter (e.g., quark 

deconfinement or hyperon formation), fields may 

significantly alter predictions of neutron star structure and 

stability. Such enhancements could bridge the gap between 

theoretical predictions and astrophysical observations. 

Gravitational wave signals from neutron star mergers, 

combined with pulsar timing measurements and X-ray 

observations of thermal emissions, offer complementary 

avenues for testing and validating the models proposed in 

this study. The unavailability of a definitive and authentic 

EOS remains a significant challenge, our results highlight 

the power of theoretical modelling and numerical 

simulations in probing the unveiling physics of neutron 

stars. 
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