Photo-physical properties of Pr (III) chelates of substituted nitrobenzoic acid

and nitrophenols

Alok Vyas¹, Mahendra Vyas² and Manoj S Shekhawat³

¹Department of Science and Humanities, GPC, Bikaner (Raj.) India ²Department of Chemistry, Engineering College Bikaner, Bikaner (Raj.) India ³Department of Physics, Engineering College Bikaner, Bikaner (Raj.) India

Abstract

Electronic absorption and emission spectra were recorded for chelates of Pr (III) with 2-hydroxy-4-nirobenzoic acid, 3hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrobenzoic acid, 4-methyl-2-nitrophenol, 4-chloro-2-nitrophenol and 5-fluoro-2nitrophenol in various M: L stoichiometry and for different pH. Intensity and energy of intraconfigurational 4fⁿ transitions have been determined from the absorption spectra. The spectroscopic parameters like Slater-Condon (F_k), Racah (E^k), Lande (ζ_{4f}) and Judd-Oflet parameters Ω_{λ} (λ =2, 4, 6) have been computed using statistical method like partial regression method. The Judd-Oflet intensity parameters and fluorescence spectra have been used to calculate radiative life time (τ) of two excited states ³P₀ and ¹D₂. From the fluorescence spectra of the chelates, effective line width ($\Delta \lambda_{eff}$) spontaneous emission probability (A), fluorescence branching ratio (β) and stimulated emission cross section (σ) have been determined for three optical transition ³P₀-³H₄, ³P₀-³H₅ and ¹D₂-³H₄. Spectroscopic and intensity parameters were studied with respect to the ligand field symmetry and degree of bond covalency.

Keywords: Praseodymium, Substituted nitrobenzoic acid, Substituted nitrophenols, Photo physical properties, Judd Ofelt parameter, Laser parameter.

Address of correspondence Dr. Alok Vyas, Department of Science and Humanities, GPC, Bikaner (Raj.) India Email: alokvyasji@gmail.com	How to site this article Vyas A., Vyas M., Shekhawat M. S., Photo-physical properties of Pr (III) chelates of substituted nitrobenzoic acid and nitrophenols, J Cond. Matt. 2023; 01 (01): 28-40 Available from: https://doi.org/10.613/43/jcm.v1i01.7	
	https://doi.org/10.61343/jcm.v1i01.7	

Introduction

Rare earth metal complexes in the recent days are tools for various emerging fields from ranging from laser technology to bio-medical arenas [1-9]. As a part of systematic investigation, the complexes of hydroxy nitrobenzoic acid (2-hydroxy-4-nirobenzoic acid, 3-hydroxy-4-nirobenzoic acid and 4-hydroxy-3-nitrobenzoic acid) and substituted nitrophenols (4-methyl-2-nitrophenol, 4-chloro-2-nitrophenol, and 5-fluoro-2-nitrophenol) with rare earth metal ions were studied in detail for their photo-physical properties as literature survey indicates little work on these complexes [10-25].

In the current pursuit, Pr (III) chelates of hydroxy nitrobenzoic acid and substituted nitrophenols were selected for study and their absorption and emission spectra were recorded and analyzed for various spectroscopic parameters (energy, intensity and laser parameters). Praseodymium exhibits characteristic f-f absorption spectrum which corresponds to transitions from the ground state multiplet to the excited state multiplet. These transitions have a fixed

Journal of Condensed Matter. Vol. 1. No. 1 (2023)

spectral position but their intensity and fine structure may vary with embedding matrix. The intensity of these multiplet-to-multiplet transitions has been successfully described by the Judd-Oflet theory [26-27]. According to Judd-Oflet theory, mixing between 4fⁿ configuration and another configuration having opposite parity may be occurred by the crystal field potential and cause 4f-4f transitions to be allowed by the induced electric dipole. The spectra of Praseodymium consist of four peaks spectra with narrow bands with in the visible regions, representing the transition between ³H₂ (ground state) to ¹D₂, ³P₀, ³P₁, ³P₂ (excited states). The primary object of this investigation is to determine the Judd-Oflet* intensity parameters from the oscillator strength of absorption peaks and to examine how intensity parameters respond to the minor changes in the ligand environment. In addition to this, spectroscopic parameters Slater-Condon [28-29] (F_k), Racah [30-33] (E^k), Lande (ζ_{4f}) were also determined to study degree of covalency in the metal-ligand interaction. Using the Judd-Oflet intensity parameters Ω_{λ} (λ =2, 4, 6) and fluorescence spectra of the complexes, laser parameters like radiative lifetime of excited states, spontaneous emission probability,

fluorescence branching ratio and stimulated emission cross section of optical transitions were also evaluated to examine the alteration in fluorescence properties in conjunction with that of structure of the complex.

Experimental Studies

Hydroxy nitrobenzoic acid [2-hydroxy-4-nirobenzoic acid, 3-hydroxy-4-nitrobenzoic acid and 4-hydroxy-3nitrobenzoic acid] and substituted nitrophenols [4-methyl-2-nitrophenol, 4-chloro-2-nitrophenol, and 5-fluoro-2nitrophenol] were obtained from Acros-Organics and used directly. Acetate salts of Praseodymium were obtained from Indian Rare Earths Ltd., India. All other chemicals were obtained from Ranbaxy, India ltd. All solutions were prepared prior to the experiments in double distilled deoxygenated water. Stock solutions of 0.01 M ligand and 0.01 M metal ions were also prepared in deoxygenated water. The absorption studies were carried out with the sample solutions of metal and ligands in stoichiometric ratio (M:L) of 1:1, 1:2, 1:3 and 1:4 to record the spectra. The absorption spectra of the sample solutions were recorded at the room temperature in the range of 400-700nm using Systronic-119 spectrophotometer with a scan speed 600 nm/min. The pH of 1:2 M:L solution has been altered in the range of 4.5-7.5 to obtained optimum pH range. The fluorescence spectra were recorded at room temperature on Hitachi Fluorescence spectrophotometer model F-3000 having a xenon lamp and spectral range of 200-900nm at the excitation wavelength of 443.5 nm.

Theory of Rare earth Spectroscopy

The effective Hamiltonian [33-35] of rare earth metal ion under the influence of a ligand field is composed of four terms

$$H = H_{c} + H_{e} + H_{m} + H_{L}$$
$$H = \sum_{i=j}^{N} \left(-\frac{h^{2}}{2m_{e}} \Delta^{2}_{i} - \frac{Ze^{2}}{4\Pi\epsilon_{0}} \right) + \sum_{i>k=1}^{N} \frac{e^{2}}{4\Pi\epsilon_{0}r_{ik}} + \sum_{i=k}^{N} \frac{Ze^{2}\hbar^{2}}{8\Pi\epsilon_{0}C^{2}m_{e}^{2}r_{i}^{3}} \vec{S}_{i} \vec{l}_{i} + \sum_{i=1}^{N} \sum_{t=1}^{M} \frac{Ze^{2}}{d_{il}} \dots 1.1$$

Here, first term H_c represents the undisturbed Hamiltonian (central field approximation), the second term H_e represents columbic interactions which were calculated by Slater [28], shortely, Codon [29] and Racah [30-32] using tensor operated methods and are expressed in terms of Slater Codon (F₂, F₄, F₆) and Racah parameters (E₁, E₂, E₃). The third term H_m gives spin orbit interactions, expressed as Lande parameter (ζ_{4f}). The final term H_L is the ligand field Hamiltonian (configuration interaction) which is expressed as interaction parameters (α).

(a) Calculation of Energy parameters:

The Taylor series expansion method used by Wong [34-38] and other workers has been utilized for the evaluation of the spectroscopic parameters from the observed spectra [figure

1.1-1.3 and 2.1-2.3] for different M:L ratios and for different pH values. The energy E_j of the j^{th} level is given by the equation

$$E_j(F_k,\zeta_{4f}) = E_{oj}(F_k,\zeta_{4f}) + \sum_{k=2,4,6} \frac{\partial E_j}{\partial F_k} \Delta F_k + \frac{\partial E_j}{\partial \zeta_{4f}} \Delta \zeta_{4f \dots 1.2}$$

where E_{oj} = Zero order energy of the j^th level and ΔF_k & $\Delta\zeta_{4f}$ are the small changes in the corresponding parameters. The values of zero order energy E_{oj} and partial derivatives for the observed values of Pr(III) calculated by Wong has been used in the current evaluation. The values of ΔF_k & $\Delta\zeta_{4f}$ have been calculated by partial regression method. The values of F_k and ζ_{4f} are then calculated using following equations [Table 1.1 and Table 2.1].

$$[F_k = F_k^0 + \Delta F_k] \quad k=2, 4, 6 \qquad \dots 1.3$$

$$\zeta_{4f} = \zeta_{4f}^0 + \Delta \zeta_{4f} \qquad \dots 1.4$$

where F_k^0 and ζ_{4f}^0 are the zero order values of the corresponding parameters. The Racah parameters E_k have been calculated from F_k parameters using following equations

$$E^1 = \frac{[70F_2 + 231F_4 + 2002F_6]}{9} \qquad \dots 1.5$$

$$E^2 = \frac{[F_2 - 3F_2 + 7F_6]}{9} \qquad \dots 1.6$$

$$E^2 = \frac{[5F_2 + 6F_4 - 91F_6]}{3} \qquad \dots 1.7$$

Using the computed F_k and ζ_{4f} values, the E_j values (E_c) have been calculated for Pr (III) complexes with three ligands [and are listed in Table 1.1 and Table 2.1]. The nephelauxetic effect and bonding parameter, important tools for determination of degree of covalency, have also been evaluated using the following equations 1.8.

$$\beta = \frac{F_K^C}{F_K^f}$$
 and $b^{1/2} = \left[\frac{(1-\beta)}{2}\right]^{1/2}$...1.8

where f and c refer to the free ion and complex respectively. The values of Slater-Codon (F₂, F₄, F₆) and Racah parameters (E^1 , E^2 , E^3) Lande (ζ_{4f}) along with nephelauxetic effect and bonding parameters are listed in Table 1.2 and Table 2.2.

(b) Calculation of oscillator strength and intensity parameter

The experimental oscillator strength (P_{exp}) of the observed bands have been calculated by using the relation

$$P_{exp} = 4.318 x 10^{-9} \int \varepsilon(\bar{\nu}) d\bar{\nu}$$
 ...1.9

where $\varepsilon(v)$ is the molar absorption coefficient at the energy v and the integral corresponds to the area of the absorption band for certain transition. The theoretical oscillator strength P_{cal} were calculated by employing Judd-Oflet theory taking into account that f-f transitions are predominately induced electric dipole transitions. According to Judd-Oflet the oscillator strength of a transition between initial J manifold and terminal J'

manifold, is given by

$$P_{cal} = \left(\frac{8\Pi^2 mcv(n^2 + 2)^2}{3h(2J+1)9n}\right) \sum_{\lambda=2,4,6} \Omega_{\lambda} \Big| < f^N((\alpha, S, L)J \| U^{(\lambda)} \| f^N(\alpha', S', L')J' > \Big|^2 \dots 2.0$$

where $||U^{(\lambda)}||$ represents the square of the reduced matrix elements of the unit tensor operator $U^{(\lambda)}$ connecting the initial and final states, summing over the three values $\lambda=2,4,6$. In the above equation the Ω_{λ} quantities, called as the Judd-Oflet intensity parameters were obtained from the least square analysis of the observed oscillator strength by employing the following equation.

$$P_{\rm exp} = \Omega_2 v [U^2]^2 + \Omega_4 v [U^4]^2 + \Omega_6 v [U^6]^2 \qquad \dots 2.1$$

where v is the energy of the band in cm⁻¹. The values of judd-Oflet intensity parameters are listed in table 1.3 and table 2.3 for all the three kinds of chelates.

(c) Calculation of laser parameters:

Judd-Ofelt intensity parameters calculated above were used for the determination of radiative properties of rare earth metal complexes Thus the Ω_{λ} values thus obtained from the absorption measurements are used to calculate the spontaneous emission probability(A), branching ratios, radiative life time and stimulated emission cross section as per equations given below where the symbols have usual meanings [42-43].

(i) Spontaneous emission probability (A)-The spontaneous emission probability from an initial J manifold to terminal J' manifold is given by

$$A = \frac{64\pi^{4}e^{2}}{3h(2J'+1)\lambda_{p}^{3}}n\left[\frac{(n^{2}+2)^{2}}{9}\right] \times \sum_{\lambda=2,4,6} \Omega_{\lambda} \Big| < f^{N}(a',S',L')J' \Big\| U^{(\lambda)} \Big\| f^{N}(\overline{a},\overline{S},\overline{L})\overline{J} > \Big|^{2} \dots 2.2$$

The A values for different emission transitions, are calculated by substituting the emission wave length λ_p reduced matrix elements for the relevant transition and the values of parameters

(ii) Fluorescence branching ratio (β)-The fluorescence branching ratio for the transitions originating from a specific manifold is defined by

$$\beta = \frac{A}{\sum_{\overline{\alpha},\overline{S},\overline{L},\overline{J}}A} \qquad \dots 2.3$$

the values depend upon Ω_4 and Ω_6 parameters which in turn depend upon the coordination environment.

(iii) **Radiative lifetime** (τ)-The radiative life time τ for a transition is reciprocal of spontaneous emission probability A. For radiative decay from the initial J' manifold $|f^N(\alpha', S', L')J' >$ it is given by

$$\boldsymbol{\tau} = \boldsymbol{A}^{-1} \qquad \dots 2.4$$

(iv) Stimulated emission cross-section (σ_p)-The stimulated emission cross-section (σ_p) for transition from an initial J manifold $|f^N(\alpha', S', L')J' >$ to terminal J manifold $|f^N(\overline{\alpha}, \overline{S}, \overline{L})\overline{J} >$ is expressed as

$$\sigma_p = \frac{\lambda_p^4}{8\pi c n^2 \Delta \lambda_{eff}} A \qquad \text{and} \quad \Delta \lambda_{eff} = \frac{\int I(\lambda) d\lambda}{I_{max}}$$

...2.5

where λ_p the peak fluorescence is wave length of the emission band and $\Delta\lambda_{eff}$ is the effective fluorescence line width and $l(\lambda)$ is fluorescence intensity at wavelength λ . The rate of energy extraction from a laser material is dependent on the stimulated emission cross-section σ_p . This parameter is most important among laser parameters and is generally used to predict laser action. The values of above mention laser parameters for Praseodymium chelates are listed in table 1.4 and table 2.4.

Figure 1.1 Absorption spectra of Pr(III)-2H4NBA for different molar ratios and for different pH

Figure 1.2: Absorption spectra of Pr(III)-3H4NBA for different molar ratios and for different pH

Figure 1.3 Absorption spectra of Pr(III)-4H3NBA for different molar ratios and for different pH

Figure 1.4: Fluorescence spectra of Pr(III) -2H4NBA

Figure 1.5: Fluorescence spectra of Pr(III) -3H4NBA

Figure 1.6: Fluorescence spectra of Pr(III) - 4H3NBA

Figure 2.1: Absorption spectra of Pr(III)-4M2NP for different molar ratios and for different pH

Figure 2.2: Absorption spectra of Pr(III)-4C2NP for different molar ratios and for different pH

Figure 2.3: Absorption spectra of Pr(III)-4F2NP for different molar ratios and for different pH

Figure 2.4: Fluorescence spectra of Pr(III) -4M2NP

Figure 2.5: Fluorescence spectra of Pr(III) -4C2NP

Figure 2.6: Fluorescence spectra of Pr(III) -5F2NP

Result and Discussion

(a) Oscillator Strength:

The absorption spectra of Praseodymium chelate in the wave length range of 400-650 nm at room temperature containing substituted nitrobenzoic acid (2H4NBA, 3H4NBA, 4H3NBA) are given in figure 1.1-1.3 and for the substituted nitrophenols (4M2NP, 4C2NP, 5F2NP) in the figure 2.1-2.3. The solution spectra have been analysed by resolving each band into Gaussian curve shape to enable evaluation of oscillator strength. The bands for different transitions have been identified by comparing the values of energies with corresponding energy level in free metal-ion. The oscillator strength values which are a measure of intensities of specific electronic transitions or degree, to which a specific transition is allowed, show marked dependence on the cation environment. The four distinct bands in the visible region can be attributed to the excitation

from the ground state $({}^{3}H_{4})$ to various excited states $({}^{1}D_{2},$ ³P₀, ³P₁, ³P₂*). To ascertain the molar ratio for optimum molecular stacking in solution, absorbance of complexes was recorded for four different ratios (1:1, 1:2, 1:3 and 1:4) and oscillator strength was calculated (table 1.1 for series A and table 2.1 for series B). For different molar ratios, value of absorbance was found to be in order 1:1 < 1:4 < 1:3 < 1:2showing the bidentate nature of ligand and metal complex can be abbreviated as [Pr(nba)2](CH3COO)-3 and [Pr(np)2](CH3COO)3 [where nba=2H4NBA, 3H4NBA, 4H3NBA and np=4M2NP, 4C2NP, 5F2NP]. To understand the effect of pH on complexation, the absorption spectra of metal chelate were recorded in the wave length 430-460 nm for different pH range [4.5-5.5, 5.5-6.5, 6.5-7.5, and 7.5-8.5]. The absorbance value for a particular pH range represents the weighted average of three values measured at three different points (for example three pH points 4.5, 5.0, 5.5 were selected for pH range 4.5-5.5). The absorbance of metal chelates was found to be in the order 4.5-5.5 < 5.5-6.5< 6.5-7.5 > 7.5-8.5 (see figure 1.2 and 2.2). The decrease in value at higher pH can be attributed to the precipitation of metal chelate as turbidity appeared in solution after pH 7.5

(b) Energy Parameters:

The E_j values using Wong Equation 1.2 have been calculated for all the observed transitions of Pr(III) complexes with 2 series of ligands for different pH range. The values in table 1.2 (for ligands of series A) and in table 2.2 (for ligands of series B) is the average of three measurements done at various pH points for a given pH range and their value has been listed in Table 1.2 and 2.2. The low value of r. m. s. between the experimental and theoretical values of energy for the observed transitions suggests the suitability of above relation. It is the noncentro-symmetrical interactions of metal ion with surrounding ligands that would cause the mixing of electronic states with even parity, thus f-f transitions become allowed ones as induced electric dipole transitions [26-27, 36-41]. During current investigation it has been observed that ligand 2H4NBA (for ligands of series A) and ligand 4M2NP (for ligands of series B) produces greater amount of vibronic coupling with central metal ion. The nature of metal-ligand bond can be analyzed in terms of Slater-Condon parameters (F_k and E^k) which represent the magnitude of interelectronic repulsions in metal ions. The decrease in value of these parameters in metal complexes (Table 1.2-series A and Table 2.2-series B) as compared to free aqua ion indicates expansion of f electron cloud which can be attributed in terms of degree of complexation.

The value of these parameters (F_K , E^K and ζ_{4f}) have been computed for different pH range and it was found that value decreases with increase in pH and was found to be lowest for the range 6.5-7.5. Thus, this range appears to be optimum pH range for the molecular stacking in solution. Among two series of chelates, the decrease in value of Slater and Codon parameters (F_k and E^k) is more for series A containing substituted nitro benzoic acids than series B.

For three ligands of nitrobenzoic series (series A), the value

of F_k and EK [see table 1.2] were chosen to determine the order of complexation tendency. The values were found to be lowest for the complex [Pr(nba)2](CH3COO)3 {where nba=2H4NBA} as compared to other two chelates. This is probably due to adjacent attachment of hydroxyl to carboxylic group and meta position of nitro group as compared with hydroxy group in 2H4NBA. In case of series B (containing hydroxy nitro-phenols), the value of F_k and E^K is lowest for [Pr(np)2](CH3COO)3 {where np=4M2NP} [see table 2.2], this probably due to fact the electron withdrawing effect is more pronounced in halogens (F and Cl) than methyl group. The decrease in the value of ζ_{4f} (as compared with free ion) clearly suggests the decrease in spin-orbit interactions indicating a general red shift in case of metal chelates. It has been found that the nephelauxetic ratio (β) for all the systems is less than one indicating that the metal-ligand interaction is not ionic but there is a mixing of metal and ligand orbitals i.e., the metal-ligand bonding in these chelates is not mere ionic but there is covalency in them.

(c) Intensity Parameters:

The effect of host matrix on local environment for a given rare earth ion can be elucidated using the Judd-Oflet theory by studying changes in the experimentally fitted Judd-Oflet intensity parameters [Ω_{λ} (λ =2, 4, 6)]. It has been shown that among the three intensity parameters the Ω_2 is very sensitive to the structural details and chemical environment of the ligand environment. During current investigation, it is found that value of Ω_2 , decrease with upon complexation and it is more pronounced for 1:2 M:L ratio for the given ligand. The decrease is more pronounced for series A [substituted nitrobenzoic acid] than for series B [substituted nitrophenols]. The value is lowest for 2H4NBA among nitrobenzoic acid and for 4M2NP among nitrophenols.

(d) Radiative Properties and Fluorescence Spectra:

The fluorescence spectra of three chelates recorded at room temperature using a xenon laser with excitation wavelength of 443.5 nm is shown in figures 1.4-1.6. The spectra consist of three transitions corresponding to ³P₀-³H₄, ³P₀ - ³H₅ and ${}^{1}\text{D}_{2}$ - ${}^{3}\text{H}_{4}$ arising from two excited states ${}^{1}\text{D}_{2}$ and ${}^{3}\text{Po}$. Using the $\Omega\lambda$ values thus obtained from the absorption measurements are used to calculate spontaneous emission probability, branching ratios, radiative life time and stimulated emission cross section for the metal chelates as per the equations given above. Transitions having spontaneous emission probability (A) greater than 500 sec-1 and fluorescence branching ratio (β) ~ 0.5 are considered to be good radiation transition. It has been observed that among three transitions, value of spontaneous emission probability is maximum for the transition ³P₀-³H₄ for both series of ligands. The value is 722.633 for Pr(III)-2H4NBA, 620.089 for Pr(III)-3H4NBA and 562.093 cm-1 for Pr(III)-4H3NBA. This trend clearly indicates that spontaneous emission probability is related to structural dynamics of chelates. In the case of Pr (III) chelates of nitrophenols, the stimulated emission probability (A) for the transition ${}^{3}P_{0}$ - ${}^{3}\text{H}_{4}$ was found to be 606.287 with ligand 4M2NP, 597.944

with ligand 4C2NP and 589.613 with ligand 5F2NP. These values clearly indicate that among two ligand series, ligands of first category have higher value of stimulated emission probability, probably because they have higher degree of covalency in the metal -ligand linkage.

The luminescence branching ratio (β) is a critical parameter, to the laser designer, because it characterizes the possibility of attaining stimulated emission from any specific transition and among three transitions observed in two series of ligands, only transition ${}^{3}P_{o}{}^{-3}H_{4}$ have the adequate value of branching ratio. For the Pr (III) chelates of nitrobenzoic acid and nitrophenols, the observed values are very close (~ 0.76 for the nitrophenols and ~ 0.75 for the nitrobenzoic acid). These values indicate that two kinds of ligands have similar branching ratio for the transition ${}^{3}P_{o}{}^{-3}H_{4}$.

Stimulated emission cross section (σ) is most important laser parameter. Its value signifies the rate of energy extraction from the laser material. Value of σ for the Pr (III) chelates with nitrobenzoic series ranges from 1.62-1.39 for the transition ${}^{3}P_{0}$ - ${}^{3}H_{4}$, 0.81-0.84 for the transition ${}^{3}P_{0}$ - ${}^{3}H_{5}$ and 0.21-0.22 for the ${}^{1}D_{2}$ - ${}^{3}H_{4}$. For the Pr (III) chelates with nitrophenols, the observed value ranges from 1.42-1.61 for the transition ${}^{3}P_{0}$ - ${}^{3}H_{4}$, 0.78-0.85 for the transition ${}^{3}P_{0}$ - ${}^{3}H_{5}$ and 0.24-0.26 for the ${}^{1}D_{2}$ - ${}^{3}H_{4}$. Thus, among three transitions observed with both series of ligand ${}^{3}P_{0}$ - ${}^{3}H_{4}$ has the maximum value of stimulates emission cross section.

The fluorescence life time (τ) for a transition is reciprocal of A. The minimum value of τ has been obtained for the transition ${}^{3}P_{0}{}^{-3}H_{4}$ for the two series of Pr (III) chelates. This fact coupled with other laser parameters clearly indicate that the transition ${}^{3}P_{0}{}^{-3}H_{4}$ to be most probable laser transition and 3P0 level to be efficient fluorescence level respectively for two series of metal chelates.

Conclusion

In the present pursuit, the equilibrium, spectroscopic and luminescence studies of Pr(III) metal-chelates have been carried out with two series of ligands. The first series consist of substituted nitrobenzoic acids (2-hydroxy-4-nitrobenzoic acid [2H4NBA], 3-hydroxy-4-nitrobenzoic acid [3H4NBA], and 4-hydroxy-3-nitrobenzoic acid [4H3NBA]) and second series consist of substituted nitrophenols (includes 4-methyl-2-nitrophenol [4M2NP], 4chloro-2-nitrophenol [4C2NP], and 5-fluoro-2-nitrophenol [5F2NP]). It can be concluded that both series of ligands shows chelation with Praseodymium (III) metal salt and chelation is more pronounced for substituted nitrophenols than substituted nitrobenzoic acids and optimum pH range is found to be 6.5-7. From various energy and intensity parameters, it can be concluded that among substituted nitrobenzoic acids 2H4NBA is more effective in coordination and in substituted nitrophenols 4M2NP show maximum chelation. The Laser parameters also follows the same trend.

References

- 1 C. H. Huang: "Rare Earth Coordination Chemistry Fundamentals and Applications"; I edition, John Wiley & Sons, 2010.
- 2 S. Laurent, L. Vander, R. N. Muller: "Lanthanide complexes for magnetic resonance and optical molecular imaging"; Quaterly Journal of Nuclear Medicine and Molecular Imaging, **53** (6), 2009, pp-586-603.
- 3 E. G. Moore, A. P. Samuel, K. N. Raymond: "From antenna to assay: lessons learned in lanthanide luminescence"; Accounts of Chemical Research, 42(4), 2009, pp-542-52.
- 4 V. M. Runge: "Advances in magnetic resonance"; *Investigative Radiology*, **43** (12), 2008, pp-893-898.
- 5 M. A. Katkova, M. N. Bochkarev: "New trends in design of electroluminescent rare earth metallocomplexes for OLEDs"; Dalton Transactions, **39**, 2010, pp-6599-6612.
- 6 L. Li, C. Tsung, Z. Yang, et al.: "Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer"; *Advanced Materials*, **20** (5), 2008, pp. 903–908.
- 7 H. Song, G. Pan, X. Bai, S. Li, H. Yu, and H. Zhang: "One-dimensional rare earth compounds and complexes: preparation and improved photoluminescence properties"; *Journal of Nanoscience and Nanotechnology*, 8 (3), 2008, pp-1316–1325.
- 8 S. N. Misra, M. A. Gagnani, Indira Devi M., and R. S. Shukla: "Biological and Clinical Aspects of Lanthanide Coordination Compounds"; *Bioinorganic Chemistry and Applications*, 2(3-4), 2004, pp-155–192.
- 9 J. Comley: "TR-FRET Based Assays-Getting Better with Age. *Drug Discovery World*"; spring 2006, pp-22–37.
- 10 R. P. Mathur, K. G. Sharma & R. K. Mehta; *Proc. Indian Natn. Sci. Acad.*, 47 A, (1981), 322.
- 11 R. P. Mathur, K. G. Sharma & R. K. Mehta; J. Indian Chem. Soc., 58, (1981), 225.
- 12 R. P. Mathur, C. P. Gupta, Vibha Suri & R. K. Mehta; *Proc. Indian Natn Sci. Acad.*, **48 A**, (1982), 232.
- 13 R. P. Mathur, K. C. Mehta & R. K. Mehta; *Trans. SAEST*, **17**, (1982), 39.
- 14 R. P. Mathur, C. P. Gupta, K. G. Sharma & R. K. Mehta; *Acta. Chim. Acad. Sci.* Hungaricae, **111**, (1982), 19.
- 15 R. P. Mathur, K. G. Sharma & R. K. Mehta; *Egypt. J. Chem.*, **25**, (1982), 409.
- 16 R. P. Mathur, Praveen Mathur & R. K. Mehta, J. Indian Chem. Soc., 60, (1983), 107.
- 17 R. P. Mathur, Veena Praadhan & S.P. Mathur; *Trans. SAEST*, **25**, (1990), 9.
- 18 R. P. Mathur, Veena Pradhan & Praveen Mathur; *Chemica Acta., Turcia* (Turkey), **22**, (1994), 57.
- 19 R. P. Mathur and Anu Sharma; *Asian J. Chem.*, **12**, (2000), 615.
- 20 R. P. Mathur and R. S Verma; *Oriental J. Chem.*, **18**, (2002), 73.

- 21 Alok Vyas and R.P. Mathur; "pH metric and thermodynamic studies of rare earth chelates", Journal of Rare earths, **26**, (2008), 85-88.
- 22 W. Ference, Beata Bocian and Daria Mazur: "Spectral and thermal properties of light lanthanide complexes with 4-methoxy-3-nitrobenzoic acid"; Crotica Chemica Acta, **72** (4), 1999, pp779-787.
- 23 Sock-Sung Yun, Hong-Ryol Suh et.al: "Lanthanide complexes of some high energetic compounds (III), crystal structures and thermal properties of 2,6dinitrophenol(2,6-DNP) complexes"; Journal of Alloys and Compounds, Elsevier, Vol 408-412, pp1030-1036.
- 24 De Bettencourt-Dias A, Viswanathan S., "Nitrofunctionalisation and luminescence of quantum yield of Eu(III) and Tb(III) benzoic acid complexes"; Dalton Trans, 2006, September **14**(34);4093-103.
- 25 Tatjana N.Parac-Vogt, Sophia Pachini et.al; "Lanthanide (III) Nitrobenzene sulfonates as New Nitration Catalyst: The Role of the Metal and of the Counter ion in the Catalytic Efficiency"; European Journal of Organic Chemistry, 2004, pp 4560-4566.
- 26 B. R. Judd; "Optical absorption intensities of rare earth ions"; *Physics Review*, **127**, (1962), 750.
- 27 G. S. Oflet; "Intensities of crystal spectra of rare earth ions"; *Journal of Chemical Physics*, **37**, (1962), 511.
- 28 J. C. Slater; Phys. Rev, 34, (1929), 1293.
- 29 E. U. Condon & G. H. Shortely; "The Theory of Atomic Spectra", (1963), University Press, Cambridge.

- 30 G. Racah; *Phys. Rev.* **61**, (1942), 186.
- 31 G. Racah; *Phys. Rev.* **62**, (1942), 438.
- 32 G. Racah; *Phys. Rev.* **63**, (1942), 367.
- 33 W.T. Carnell, P. R. Fields & B. G. Wybourne; *J. Chem Phys.*, **42(11)**, (1965), 3797.
- 34 E.Y. Wong, J. Chem. Phys., **35**, (1961), 544.
- 35 E.Y. Wong, J. Chem. Phys., **38**, (1963), 976.
- 36 B. G. Wybourne; "Spectroscopic Properties of the Rare Earths", (1965), Interscience, New York.
- 37 D. E. Henrie and G. R. Choppin; J. Chem. Phys., 49, (1968), 477
- W. T. Carnell, P. R. Fields & K. Rajnak; "Electronic Energy levels in the trivalent lanthanide aqua ions I Pr³⁺, Nd ³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Journal of Chemical Physics, 49, (1968), 4412, 4424, 4443.
- 39 B. Bhatia, M.P. Bhutra and S.P. Tandon; "Spectroscopic study of Pr³⁺ amino acid ternary complexes in aqueous solution; *Revision Tec. Ing. Univ. Zulia*, **11**, (1988), 69-72.
- 40 C. K. Jorgensen, R. Reisfield; Journal of less common Metals, **93**, (1983), 107.
- 41 K. Driesen, C. G. Warland, K. Binnemans; "Spectroscopic properties of Sol-Gel glasses doped with lanthanide bipyridyl complexes"; *Material Science And Engineering* C 18, (2001), 25-258.
- 42 W. F. Krupke; *IEEE. J. Quantum Electron*, **QE-7**, (1971), 153.
- 43 W. F. Krupke; *IEEE. J. Quantum Electron*, **QE-10**, (1974), 450.

Table-1.1: Observed and computed values of oscillator strengths (P) & energies (E) of Pr(III) chelates containing hydroxy nitrobenzoic acid

1:2 M:L ratio	рН	Energy Wavelength and Oscillator Strength	Energy l ³ P2*	evels ³ P1	³ P ₀	$^{1}D_{2}$	σr.m.s. deviation
		Eexpt (cm ⁻¹)	22538	21358	20725	17016	- 91.55
2H4NBA	6.5- 7.5	Ecal (cm ⁻¹)	22450	21257	20725	17140	
2H4NBA		Pexpt x 10 ⁶	15.730	7.869	3.581	3.991	1.47
		P _{cal} x 10 ⁶	15.730	5.759	5.652	3.991	x 10 ⁻⁶
		Eexpt (cm ⁻¹)	22553	21397	20731	17025	06.22
211 <i>4</i> NID A	6.5-	E_{cal} (cm ⁻¹)	22476	21276	20733	17155	90.33
JH4NDA	7.5	Pexpt x 10 ⁶	14.784	6.920	3.178	3.845	1.28
		P _{cal} x 10 ⁶	14.784	5.080	4.983	3.845	x 10 ⁻⁶
		Eexpt (cm ⁻¹)	22554	21400	20773	17054	82.75
ALIZNID A	6.5-	Ecal (cm ⁻¹)	22485	21298	20774	17166	03.23
HIJNDA	7.5	Pexpt x 10 ⁶	13.989	6.362	2.800	3.325	1.23
		Pcal x 10 ⁶	13.989	4.606	4.526	3.325	x 10 ⁻⁶

Table-1.2: Computed values of (F_k) , (ζ_{4f}) , (E^k) (in cm⁻¹), (β) and $(b^{1/2})$ parameters of Pr (III) chelate containing hydroxy nitrobenzoic acid in various metal-ligand stoichiometries and at different pH

M:L			Slater-Con	don paran	neters	Lande	Racah	paramete	rs (E ^k)	Nephelauxetic	Bonding
Ratio	nH	chelates	$(\mathbf{F}_{\mathbf{k}})$			parameter	E ¹	\mathbf{E}^2	E ³	ß	parameter
	P		F ₂	F4	F 6	ζ_{4f}	-	-	-	٣	b ^{1/2}
			210.407	12 0 5 1	1 600	505.022	1555 220	22.020		0.0405	0.1016
		2H4NBA	310.406	42.851	4.690	705.023	4557.320	23.839	460.766	0.9637	0.1346
1:1	6.5- 7.5	3H4NBA	310.542	42.870	4.692	705.473	4559.326	23.849	460.969	0.9641	0.1338
		4H3NBA	311.109	42.948	4.700	704.416	4567.649	23.893	461.811	0.9659	0.1305
	4.5	2H4NBA	310.155	42.816	4.686	707.579	4553.638	23.819	460.394	0.9629	0.1361
	4.5- 5.5	3H4NBA	310.260	42.831	4.688	708.364	4555.17	23.827	460.550	0.9632	0.1355
		4H3NBA	310.996	42.933	4.699	704.517	4565.988	23.884	461.643	0.9655	0.1312
	5.5- 6.5	2H4NBA	310.065	42.804	4.685	708.649	4552.326	23.813	460.261	0.9626	0.1366
		3H4NBA	310.180	42.820	4.686	708.515	4554.002	23.821	460.431	0.9630	0.1359
		4H3NBA	310.929	42.923	4.698	704.405	4565.000	23.879	461.543	0.9653	0.1316
1:2	6.5- 7.5	2H4NBA	309.976	42.792	4.683	709.718	4551.015	23.806	460.129	0.9623	0.1371
		3H4NBA	310.031	42.799	4.684	713.948	4551.821	23.810	460.210	0.9625	0.1368
		4H3NBA	310.882	42.917	4.697	704.320	4564.315	23.875	461.474	0.9652	0.1319
	7 5-	2H4NBA	310.318	42.839	4.688	704.869	4556.039	23.832	460.637	0.9634	0.1351
	8.5	3H4NBA	310.360	42.845	4.689	702.878	4556.649	23.835	460.698	0.9635	0.1349
		4H3NBA	310.952	42.927	4.698	704.575	4565.344	23.881	461.578	0.9654	0.1314
	6.5-	2H4NBA	310.246	42.829	4.687	706.452	4554.972	23.826	460.529	0.9632	0.1355
1:3	7.5	3H4NBA	310.295	42.836	4.688	708.235	4555.692	23.830	460.602	0.9633	0.1353
		4H3NBA	311.022	42.936	4.699	704.672	4566.376	23.886	461.682	0.9656	0.1310
	6 5-	2H4NBA	310.303	42.837	4.688	706.163	4555.809	23.831	460.614	0.9634	0.1352
1:4	7.5	3H4NBA	310.344	42.843	4.689	708.146	4556.417	23.834	460.675	0.9635	0.1350
		4H3NBA	311.087	42.945	4.700	704.082	4567.330	23.891	461.778	0.9658	0.1306

Free aqua ion	322.090	44.460	4.867	741.000	4729.000	24.740	748.140		
								1	

Table-1.3: computed values of Judd-Ofelt (t_{λ}) intensity parameters for Pr (III) chelates containing hydroxy nitrobezoic acid for different metal-ligand stoichiometries and for different pH

M:L	pН				
Ratio		Parameters	Pr (III) - 2H4NBA	Pr (III) – 3H4NBA	Pr (III) –
		$(\Omega_{\lambda} \ge 10^9)$			4H3NBA
		Ω_2	-14.3015	-17.2159	-19.9995
	6.5-7.5	Ω_4	1.3119	1.2921	1.21562
1:1		Ω_6	4.1226	4.0948	3.91060
		Ω_4 / Ω_6	0.3182	0.3155	0.31085
		Ω_2	-11.8053	-13.4723	-14.0019
	4.5-5.5	Ω_4	1.4230	1.3669	1.2900
		Ω_6	4.3673	4.2269	4.0435
		Ω_4 / Ω_6	0.3258	0.3233	0.3190
	5.5-6.5	Ω_2	-11.3025	-12.2095	-12.7652
		Ω_4	1.4332	1.3920	1.3149
		Ω_6	4.3854	4.2710	4.0887
		Ω_4 / Ω_6	0.3268	0.3259	0.3215
1:2	6.5-7.5	Ω_2	-10.3445	-10.9524	-11.5282
		Ω_4	1.4292	1.4148	1.3398
		Ω_6	4.3398	4.3154	4.1333
		Ω_4 / Ω_6	0.3293	0.3278	0.3241
	7.5-8.5	Ω_2	-11.5555	-12.6991	-13.3771
		Ω_4	1.4279	1.3795	1.3025
		Ω_6	4.3765	4.2489	4.0659
		Ω_4 / Ω_6	0.3262	0.3246	0.3203
	6.5-7.5	Ω_2	-12.2089	-14.7203	-17.5204
		Ω_4	1.3916	1.3421	1.2652
1:3		Ω_6	4.2732	4.1829	3.9991
		Ω_4 / Ω_6	0.3256	0.3208	0.3163
	6.5-7.5	Ω_2	-13.0713	-15.9532	-18.7639
		Ω_4	1.3363	1.3172	1.2404
1:4		Ω_6	4.1663	4.1380	3.9550
		Ω_4 / Ω_6	0.3207	0.3183	0.3136

Table-1.4: The Spontaneous emission probability (A), fluorescence branching ratio (β), total spontaneous probability (A_T,) measured [τ] and radiative fluorescence life time [τ_R] for Pr (III) chelates containing hydroxy nitrobenzoic acid with fluorescence peak value.

Metal chelates	Parameters	$^{3}P_{0} \rightarrow ^{3}H_{4}$	$^{3}P_{0} \rightarrow ^{3}H_{5}$	$^{1}\text{D}_{2} \rightarrow {}^{3}\text{H}_{4}$
	$\lambda_p(nm)$	486	525.8	602.6
	$\Delta \lambda_{\rm eff} (nm)$	22.05	15.46	20.22
	A (sec ⁻¹)	722.633	184.397	36.378
	В	0.765855	0.195547	0.038598
P1(111)-211411DA	A _⊤ (sec ⁻¹)		942.981	
	τ (μs)	138.5	542.3	2747.5
	τ _r (μs)		106.1	
	σ (pm²)	1.622	0.810	0.211
	$\lambda_p(nm)$	488	526	602.9
	$\Delta\lambda_{\rm eff}(nm)$	21.22	13.32	18.45
	A (sec ⁻¹)	620.0869	163.7574	33.23951
Dr/111) 24/NIDA	В	0.758902	0.200417	0.040681
FI(III)-304NDA	A⊤ (sec ⁻¹)		817.083	
	τ (μs)	161.3	610.7	3008.5
	τ _r (μs)		122.4	
	σ (pm²)	1.461	0.842	0.212
	$\lambda_p(nm)$	487.1	527.2	602
	$\Delta \overline{\lambda_{eff}}(nm)$	20.07	11.04	18.45
FI(III)-403NDA	A (sec ⁻¹)	562.093	152.591	31.491
	β	0.753299	0.204497	0.042204

A _T (sec ⁻¹)	746.175				
τ (μs)	177.9	655.3	3175.5		
τ _R (μs)		134.0			
σ (pm²)	1.390	0.812	0.211		

Table-2.1: observed and computed values of oscillator strengths (P) & energies (E) of Pr(III) chelates containing substituted nitrophenols

1:2		Energy Wavelength		Energy	y levels		
M:L ratio	рН	and Oscillator Strength	³ P ₂ *	³ P ₁	³ P ₀	$^{1}D_{2}$	σ _{r.m.s.} deviation
		Eexpt (cm ⁻¹)	22558	21404	20732	16969	78.19
4M2NP	6.5-	E _{cal} (cm ⁻¹)	22446	21257	20733	17139	
	7.5	Pexpt x 10 ⁶	13.783	6.400	3.765	3.341	0.82
		P _{cal} x 10 ⁶	13.783	5.120	5.020	3.341	x 10 ⁻⁶
		Eexpt (cm ⁻¹)	22507	21358	20730	16998	96.22
4C2NP	6.5- 7.5	E _{cal} (cm ⁻¹)	22425	21242	20732	17128	, , , , , , , , , , , , , , , , , , , ,
		P _{expt} x 10 ⁶	13.483	6.190	3.581	3.155	0.89
		P _{cal} x 10 ⁶	13.483	4.917	4.832	3.155	x 10 ⁻⁶
		Eexpt (cm ⁻¹)	22503	21354	20730	16996	95.97
5F2NP	6.5-	E _{cal} (cm ⁻¹)	22420	21239	20731	17125	
	7.5	Pexpt x 10 ⁶	13.184	5.980	3.398	2.970	0.88
		P _{cal} x 10 ⁶	13.184	4.719	4.637	2.970	x 10 ⁻⁶

Table-2.2: Computed values of (F_k) , (ζ_{4f}) , (E_k) (in cm⁻¹), (β) and $(b^{1/2})$ parameters of Pr(III) chelates containing substituted nitrophenols in various metal-ligand stoichiometries and at different pH

M:L			Slater-Condo	n paramete	rs (F _k)	Lande	Racah	parameter	rs (E ^k)	Nephelauxetic	Bonding
Ratio	nH	chelates				parameter				ß	parameter
	P	enerates				$\zeta_{4\mathrm{f}}$				٩	b ^{1/2}
			\mathbf{F}_2	\mathbf{F}_4	\mathbf{F}_{6}		\mathbf{E}^{1}	\mathbf{E}^2	\mathbf{E}^{3}		
		4M2NP	310.510	42.866	4.691	703.809	4558.858	23.847	460.922	0.9640	0.1340
1:1	6.5- 7.5	4C2NP	310.636	42.883	4.693	696.906	4560.702	23.856	461.108	0.9644	0.1333
		5F2NP	310.692	42.891	4.694	697.080	4561.529	23.861	461.192	0.9646	0.1330
	4.5	4M2NP	310.456	42.858	4.690	703.104	4558.061	23.843	460.841	0.9638	0.1343
	4.5- 5.5	4C2NP	310.596	42.877	4.693	697.024	4560.120	23.853	461.049	0.9643	0.1335
		5F2NP	310.580	42.875	4.692	697.183	4559.875	23.852	461.025	0.9642	0.1336
	= =	4M2NP	310.334	42.841	4.689	704.522	4556.262	23.833	460.659	0.9635	0.1350
	5.5- 6.5	4C2NP	310.474	42.860	4.691	698.442	4558.321	23.844	460.868	0.9639	0.1342
		5F2NP	310.512	42.866	4.691	697.074	4558.889	23.847	460.925	0.9640	0.1340
1:2	(5	4M2NP	310.300	42.836	4.688	704.277	4555.765	23.831	460.609	0.9633	0.1352
	0.5- 7.5	4C2NP	310.440	42.856	4.690	698.198	4557.823	23.841	460.817	0.9638	0.1344
		5F2NP	310.466	42.859	4.691	696.991	4558.207	23.843	460.856	0.9639	0.1343

		4M2NP	310.381	42.848	4.689	703.685	4556.951	23.837	460.729	0.9636	0.1348
	7.5- 8.5	4C2NP	310.521	42.867	4.691	697.606	4559.010	23.848	460.937	0.9640	0.1340
		5F2NP	310.536	42.869	4.692	697.242	4559.233	23.849	460.960	0.9641	0.1339
		4M2NP	310.436	42.855	4.690	703.383	4557.773	23.841	460.812	0.9638	0.1344
1:3	6.5- 7.5	4C2NP	310.577	42.875	4.692	697.301	4559.832	23.852	461.020	0.9642	0.1336
		5F2NP	310.606	42.879	4.693	697.337	4560.261	23.854	461.064	0.9643	0.1335
		4M2NP	310.477	42.861	4.691	703.703	4558.363	23.844	460.872	0.9639	0.1342
1:4	6.5- 7.5	4C2NP	310.659	42.886	4.694	696.976	4561.03	23.858	461.142	0.9645	0.1332
		5F2NP	310.671	42.888	4.694	696.748	4561.212	23.859	461.160	0.9645	0.1331
Free aqua ion		322.090	44.460	4.867	741.000	4729.000	24.740	748.140	322.0	90	

Table-2.3: Computed values of Judd-Ofelt (T_{λ}) intensity parameters for Pr (III) chelates containing substituted nitrophenols for different metal-ligands stoichiometries and for different pH

Stoichio-	pН				
metric ratio of		Parameters	Pr (III) – 4M2NP	Pr (III) – 4C2NP	Pr (III) – 5F2NP
M:L		$(\Omega_{\lambda} \ge 10^9)$			
		Ω_2	-20.8025	-22.1557	-23.2043
	6.5-7.5	Ω_4	1.1848	1.1605	1.1342
1:1		Ω_6	3.7167	3.6856	3.6442
		Ω_4 / Ω_6	0.3187	0.3148	0.3112
		Ω_2	-17.6318	-18.6767	-19.6258
	4.5-5.5	Ω_4	1.2632	1.2467	1.2233
		Ω_6	3.8396	3.8201	3.7836
		Ω_4 / Ω_6	0.3290	0.3263	0.3233
	5.5-6.5	Ω_2	-16.5676	-17.6183	-18.5772
		Ω_4	1.2894	1.2729	1.2495
		Ω_6	3.8805	3.8611	3.8255
		Ω_4 / Ω_6	0.3322	0.3296	0.3266
1:2	6.5-7.5	Ω_2	-15.5121	-16.5685	-17.3158
		Ω_4	1.3156	1.2991	1.2810
		Ω_6	3.9219	3.9026	3.8749
		Ω_4 / Ω_6	0.3354	0.3328	0.3305
	7.5-8.5	Ω_2	-17.2091	-18.3620	-19.2014
		Ω_4	1.2738	1.2547	1.2338
		Ω_6	3.8563	3.8329	3.8003
		Ω_4 / Ω_6	0.3303	0.32735	0.3246
	6.5-7.5	Ω_2	-18.6892	-19.8343	-20.8873
		Ω_4	1.2372	1.2180	1.1918
1:3		Ω_6	3.7990	3.7754	3.7343
		Ω_4 / Ω_6	0.3256	0.3226	0.3191
	6.5-7.5	Ω_2	-19.7448	-20.8840	-21.7324
		Ω4	1.2109	1.1917	1.1709
1:4		Ω_6	3.7577	3.7340	3.7016
		Ω_4 / Ω_6	0.3222	0.3191	0.3163

Table-2.4: The Spontaneous emission probability (A), fluorescence branching ratio (β), total spontaneous probability (A_T,) measured [τ] and radiative fluorescence life time [τ_R] for Pr (III) chelates containing substituted nitrophenols with fluorescence peak value.

Metal chelates	Parameters	³ P0 → ³ H4	$^{3}P_{0} \longrightarrow ^{3}H_{5}$	$^{1}D_{2}$ \rightarrow $^{3}H_{4}$
	$\lambda_p(nm)$	485.8	525.7	603
	$\Delta \lambda_{\rm eff} (\rm nm)$	20.1	13.23	14.22
	A (sec ⁻¹)	606.287	154.151	30.253
D _n (III) AMONID	В	0.767	0.194	0.0380
PI(III)-4M2NP	A _T (sec ⁻¹)		790.691	
	τ (μs)	164.9	648.7	3305.4
	$\tau_{R}(\mu s)$		126.5	
	σ (pm ²)	1.491	0.789	0.249
	$\lambda_p(nm)$	486	525.9	603.2
	$\Delta\lambda_{\rm eff} (nm)$	19.02	12.65	13.42
	A (sec ⁻¹)	597.944	152.610	30.051
Dr/III) ACOND	β	0.766	0.195	0.0384
PI(III)-4C2INP	A_T (sec ⁻¹)			
	τ (μs)	167.2	655.3	3327.7
	$\tau_{R}(\mu s)$		128.1	
	σ (pm ²)	1.556	0.819	0.263
	$\lambda_p(nm)$	486	525.9	603.2
	$\Delta\lambda_{\rm eff} (nm)$	18.07	12.03	13.11
	A (sec ⁻¹)	589.613	150.989	29.817
Dr(III) 5E2ND	β	0.765	0.195	0.0387
11(111)-3F2INP	A_T (sec ⁻¹)		770.420	
	τ (μs)	169.6	662.3	3353.8
	$\tau_{R}(\mu s)$		129.8	
	σ (pm ²)	1.615	0.852	0.267