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Abstract 

In this study, we have investigated the thermodynamic properties of the polar quantum disc having conical disclination. The 

spectrum of the non-interacting charged particle system was obtained with the aid of the Schrödinger equation with the 

effective mass approximation. The charged particle under investigation is confined by parabolic potential and a homogeneous 

magnetic field perpendicular to the quantum disc. We have shown the variation of internal energy (U) and specific heat Cv 

with the kink parameter α. Both U and Cv increase with the increase in α. 

Keywords: Specific heat, Polar Quantum Disc, Internal energy, Thermodynamic Properties. 

 

* Address of correspondence 

Dr. Surender Pratap  

Department of Physics & Astronomical Science, 

Central University of Himachal Pradesh-176206 

(H.P), India  

 

Email: suren1986dhalaria@hpcu.ac.in 

How to cite this article 

Ritik Saklani, Bhavya Kaushik, and Surender Pratap, Thermodynamic 

Properties of Polar Quantum Disc with Conical Disclination, J. Cond. Matt. 

2023; 01 (02): 61-64 

 

Available from: 

https://doi.org/10.61343/jcm.v1i02.24  

 

Introduction 

The quest for low-dimensional materials rapidly increasing 

day by day after the successful synthesis of two-

dimensional (2D) graphene [1]. The discovery of 2D 

graphene has opened up new avenues in the fundamental 

science and technology of low-dimensional materials [2,3]. 

Many of graphene's extraordinary features stem from its 

dimensionality and exceedingly unusual electronic 

dispersion relation, in which electrons imitate relativistic 

particles. The electrons in graphene are usually referred to 

as massless Dirac fermions, which may be thought of as 

electrons with zero rest mass (despite the fact that electrons 

are fundamental particles with characteristic mass) [4]. As 

a result, the unusual behavior of electrons makes graphene 

an ideal material to explore relativistic effects in condensed 

matter physics. The most remarkable consequences of the 

unusual behavior of electrons in graphene are the quantum 

Hall effect, anomalous quantum Hall effect, Klein paradox, 

ballistic electron propagation, metal-free magnetism, 

breakdown of the adiabatic Born-Oppenheimer 

approximation, possibility of high TC superconductivity, 

and observation of relativistic phenomena such as 

zitterbewegung or jittery motion of a wave function under 

the influence of confining potentials [1]. 

In graphene, the inherent binary degrees of freedom, such 

as valleys, sublattices, and top/bottom layers in multilayers, 

result in a 2D electron gas with valley selective chirality of 

the electrons at the Fermi energy. As a result, breaking the 

spatial inversion symmetry through staggered AB sublattice 

potentials in graphene or applying a vertical electric field in 

rhombohedral multilayers opens up a band gap [4]. 

Moreover, 2D graphene is naturally anticipated to include 

1D zero-line modes caused by kinks in the Dirac mass [5]. 

Recently, Bi et al. investigated the role of topological 

defects on the electronic and transport properties of zero-

line modes in single and bilayer graphene systems. The 

band evolution of the quantum valley Hall edge modes and 

the zero-line modes in bilayer graphene ribbons reveals that 

the edge modes of the quantum valley Hall effect develop 

changing gaps as the ribbon orientation deviates from the 

zigzag direction, whereas the corresponding zero-line 

modes remain gapless all the way except in the armchair 

direction [6]. 

The study of edge states in graphene structures is currently 

gaining popularity. It has been discovered that zigzag 

graphene nanoribbons (ZGNRs) have a localized edge state 

near the Fermi energy, which has a significant impact on 

their electronic behavior [7]. In ZGNRs, the existence of 

edge states results in zero energy band gap, and hence these 

nanoribbons are always metallic [7,8]. Because the presence 

of an energy gap is required for many applications in 

nanoelectronics, controlling and manipulating the edge 

states in ZGNRs is a significant problem [8]. The effect of 
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external electric potentials applied along the edges of 

ZGNR can produce a spectral gap, transforming the metallic 

behavior of ZGNR to a semiconducting one. Therefore, it 

has been observed that edge states are sensitive to external 

electric potentials and are topological in nature [9,10]. The 

topological defects present in the system have crucial 

effects on the physical properties of the system under 

investigation. The presence of topological defects can 

modify the electronic, thermal, and thermodynamic 

properties of the material [11]. In this study, we 

theoretically investigated the thermodynamic properties of 

the polar quantum disc with conical disclination within the 

presence of a uniform magnetic field �⃗� . We have considered 

the parabolic electric potential for confinement in the polar 

disc. The Volterra process is used to introduce the 

disclination defect [12]. The partition function (Z) of the 

system is obtained after solving the Schrödinger equation 

with the effective mass approximation. The conical 

disclination described by the Volterra process is depicted in 

figure 1. 

 

Figure 1: Volterra Construction for the polar quantum disc in 

which a sector is removed from the disc. The vertical arrow 

represents homogeneous magnetic field. 

Theoretical Formulation  

We have considered a polar quantum disc of radius R and 

height h with a topological defect in the form of conical 

disclination in the presence of a uniform magnetic field. The 

disclinated disc follows the metric given below: 

  d𝑠2  =  d𝑟2  +  𝑟2d𝜑2  +  d𝑧2      φ ϵ [0, 2π, α]         …(1) 

where α is the kink parameter which is related to the deficit 

angle (for 0 < α <1) or surplus angle (for α >1). Disc having 

no conical disclination is associated with kink parameter 

value α equal to one. We simplify the metric using the 

following transformation of coordinate system [12]. 

        ρ =  αr, ϕ =
𝜑

𝛼⁄ , ϕ ∈  [0, 2π]               …(2) 

the simplified metric has the form 

d𝑠2 = 𝛼−2d𝜌2 + 𝜌2d𝜙2  +  d𝑧2,        ϕ ϵ [0,2π]         …(3) 

The parabolic potential for the polar disc is defined as: 

  V (ρ, α) =  {
1

2 α2 μω0𝑝ρ
2    ;     ρ <  αR   

           ∞         ;     ρ >  αR           
              …(4) 

The potential in the axial direction is 

V (z) =  {
    0      ;     ρ < h   

∞   ;      ρ > h
                                        …(5) 

where, μ represents the electron’s effective mass, while ω0p 

corresponds to the angular frequencies linked with the 

classical harmonic oscillator for the parabolic potential. The 

Schrödinger equation in effective mass approximation is 

written as [13]- 

1

2𝜇
(𝑝 + 𝑒𝐴 )

2
 𝜓(𝜌, 𝑧, 𝜙) + 𝑉(𝜌) 𝜓(𝜌, 𝑧, 𝜙) = 𝐸𝑇 𝜓(𝜌, 𝑧, 𝜙) 

…(6) 

where 𝑝 ⃗⃗⃗  = −iħ∇⃗⃗  is the quantum mechanical momentum 

operator and 𝐴 = (
𝐵𝜌

2𝛼
) �̂� is the vector potential with the 

magnetic field. Total wavefunction for electron in polar 

quantum disc can be written in the form: 

ψ(ρ, z, ϕ) = 𝐶𝑚𝑙𝜒𝑚𝑙(ρ)sin (
nπz

h
)𝑒𝑖𝑚𝜙                   …(7) 

where Cml is the normalization factor, which depends on the 

values of the azimuthal m and radial l quantum numbers. 

The radial part of the electron’s wavefunction satisfies a 

second order differential equation: 

α2

𝜌

𝑑

𝑑𝜌
(𝜌

𝑑

𝑑𝜌
𝜒(𝜌)) + {

2𝜇

ħ2 [𝐸𝑚𝑙 −
m ħ𝜔𝑐 

2 α 
− 𝑉(𝜌)] −

𝑚2

𝜌2 −

𝜇2𝜔𝑐
2

4 ħ2α2 
} 𝜒(𝜌) = 0                  …(8) 

The solution of the radial Schrödinger equation is a linear 

combination of the Whittaker M and W functions 

𝜒(𝜌) =
𝐶1

𝜌
𝑀𝜌,𝑣(𝜉) +

𝐶2

𝜌
𝑊𝜎,𝑣(ζ)                                           …(9) 

where   𝜎 =
2 𝛼2E𝑚𝑙−𝑚𝛼ℏ𝜔𝑐

2 ħα2√𝜔𝑐
2+ω0𝑝

2
,                                                     …(10) 

𝑣 =
|𝑚|

2 α
                                                                         …(11) 

𝜉 =
𝜇√𝜔𝑐

2+4ω0𝑝
2

 2 ħα2 𝜌2                                          …(12) 

C1 and C2 are constants. In Eqn. (9), the Whittaker W 

function has divergent nature at origin, so C2 = 0, leaving 

the radial component of the wave function as 

𝜒(𝜌) =
𝐶1

𝜌
𝑀𝜌,𝑣(𝜉)                                                        …(13) 

Also, the electron’s wave function must vanish at boundary 

of the wall (ρ = αR) and we obtained the following 

expression for the energy eigen values 

𝐸𝑇 = 𝐸𝑚𝑙 + 𝐸𝑧 = ℏ√𝜔𝑐
2 + 4ω0𝑝

2𝜎𝑅 +
𝑛2 ħ2𝜋2

2 𝜇 ℎ2 +
mℏ ω𝑐

2 𝛼
   …(14) 

in which σR is the value of σ that satisfies the boundary 

condition Mσ,ν(ζR) = 0, with ζR = ζ (ρ =  αR). 

The partition function is given by- 
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 𝑍 = ∑ 𝑒
 
𝑛2 ħ2𝜋2

2 𝜇 ℎ2 ∑ 𝑒
mℏ ω𝑐

2 𝛼 𝑒
ℏ√𝜔𝑐

2+4ω0𝑝
2σR 

𝑚𝑛               …(15) 

𝑍 ≈ 𝑍1𝑍2                                                                                                         …(16)     

𝑍1 = ∑ 𝑒
𝑛2 ħ2𝜋2

2 𝜇 ℎ2 →𝑛 ∫ 𝑒− 𝛾 𝑛2
 𝑑𝑛 =

1

2
√

𝜋

𝛾

∞

0
                 …(17)                     

where 𝛾 = 𝑒
 ħ2𝜋2

2 𝜇 ℎ2, and we have used the classical 

approximation because the order of spacing between the 

energy level is very less than the thermal energy that is Δ E 

≈ 10-42 J << kB T ≈ 10-21 J, so we have replaced summation 

with the integration. 

𝑍1 ≈
h

ℏ
√

𝜇

2 𝜋 𝛽
                                                                                            …(18) 

where h is the height of disc. 

Now,  

𝑍2 = 1 + 𝑒𝜒𝛽 + 𝑒2𝜒𝛽 + ⋯+ 𝑒−𝜒𝛽 + 𝑒−2𝜒𝛽            …(19) 

We define χ =
ℏ 𝜔𝑐

2 𝛼
;  these are actually geometric series. 

𝑍2 ≈
1

1−𝑒−𝛽𝜒  

𝑍 =
1

1−𝑒−𝛽𝜒

h

ℏ2 √
𝜇

2 𝜋 𝛽
              …(20) 

Internal energy U is given by: 

𝑈 = −
𝜕 ln 𝑍

𝜕 𝛽
    

𝑈 =
1

2𝛽
+

𝜒

𝑒𝛽𝜒−1
                  …(21) 

Specific heat is given by  

𝐶𝑣 = −𝑘𝐵𝛽2
𝜕𝑈

𝜕𝛽
 

𝐶𝑣 =
𝑘𝐵𝛽2𝜒2𝑒𝛽𝜒

(𝑒𝛽𝜒−1)
2 +

𝑘𝐵

2
              …(22) 

Results and Discussion 

In our calculations, we have taken the effective mass of 

electron μ = 0.067 me, magnetic energy ̄ħωc = 5.0 meV, 

thermal energy (kBT) = 26 meV, and temperature (T) = 300 

K. Figures 2 and 3 show the variation of internal energy and 

specific heat capacity with the kink parameter (α) of a polar 

quantum disc with conical disclination. It is clear from 

figure 2 that for α < 1, the increase in internal energy is very 

sharp, whereas, for α > 1, the internal energy slowly 

increases and approaches a constant value. Hence, in the 

presence of a uniform magnetic field, the internal energy of 

the system is enhanced due to the distortion produced by 

disclination. 

For α < 1, and T = 300 K, the Cv sharply increases with a 

small increase in α (see figure 3). For α > 1 with the same 

temperature, Cv increases with α and becomes constant at 

higher values of α > 1.5. 

 

Figure 2: Variation of internal energy U with the kink parameter α 

for polar quantum disc with disclination. 

 

Figure 3: Variation of specific heat Cv with kink parameter α for 

polar quantum disc having disclination.  

Conclusion  

We investigated a theoretical study to calculate the internal 

energy & specific heat for a polar quantum disc with conical 

disclination. The charge particle in quantum disc is confined 

by parabolic electric potential in the presence of the 

homogeneous magnetic field perpendicular to plan of polar 

quantum disc. Results show that internal energy and specific 

heat can be modulated with the kink parameter. These 

findings are crucial for the design of nanodevices. 
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