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Abstract 

A non-relativistic model with relativistic corrections is used to generate the mass spectra of all charm tetraquark in the diquark-

antidiquark system. Fitting parameters are derived by numerically solving the Schrodinger equation for the charmonium 

meson using the coulombic potential and the harmonic confinement interaction potential. The mass spectra of all charm 

tetraquark is calculated in present work by systematically reducing a four-body problem to a two-body problem using the 

parameters obtained from charmonium spectra. 
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Introduction 

Since 1964, when Gell-Mann proposed the component 

quark model [1], a considerable number of conventional 

hadrons, notably baryons and mesons, have been 

experimentally detected [2-4]. Other exotic states, such as 

the tetraquark, pentaquark, hybrid meson, mesonic 

molecule, and so on, were postulated a few years later [5-

8], and the realm of exotic particle physics has witnessed 

great theoretical and experimental progress in the last 

several decades. In the last decade, experimental facilities 

including as Belle, CDF, D∅, CMS, LHCb, BABAR, CDF, 

and BESIII have discovered a plethora of candidates for 

exotic hadrons [9-12]. Since the first tetraquark candidate 

was proposed in 2003 at Belle [13], physicists all around the 

planet have been attempting to explain the mass and 

structure of these hadrons. 

In 2007, Belle observed the Z (4430) state with a quark 

content of 𝑐𝑐𝑑𝑢̅̅̅̅  [14]. Another state, Y (4660), has also 

shown the indications of tetraquarks [14]. Following these 

discoveries, in 2009, Fermilab observed Y (4140), which 

decays into J/ψ and ϕ mesons and is reasoned to have charm 

and anti-charm content with a probable four quark 

combination [15]. The first confirmed four quark state was 

revealed in 2013 by BES III, the Zc (3900), which decays 

into a charged pions π± and a J/ψ meson [16]. Since 2016, 

LHCb has identified ten new additional tetraquark 

candidates, with the notable discovery of the all-charm 

tetraquark 𝑐𝑐𝑐�̅�  resonance X (6900) [15, 17-19]. 

The naming scheme of exotic hadrons is an extension of the 

XYZ states, which are used for heavy mesons. Following 

the convention, the neutral charmonium like exotic states 

that are observed in hadronic decays are regarded as X 

states. The Y states are neutral charmonium like exotic 

states observed in e+e− collisions with JPC value: 1− −. Lastly, 

the Z states are the charged, charmonium like exotic states 

[20]. 

Mesons have helped scientists understand the behavior of 

the strong force and the structure of atomic nuclei, their 

mass spectra become very significant. Considering the fact 

that mesons are one of the more primitive two-body systems 

in QCD, several theoretical models have been employed to 

calculate their mass spectra [21-27]. Similarly, many 

theoretical approaches like lattice QCD [28], QCD sum 

rules [29], NRQCD [30-31], and some potential models [32-

33] are being used to explain these tetraquarks. Numerous 

studies also explain a four-quark state as a hadronic 

molecular state [34-38]. By comparing the different 

theoretical predictions for the mass spectrum of tetraquark 

states with the experimental evidence, we may be able to 

gain a better understanding of the mechanics of strong 

interactions. 

The primary goal of the present work is to look into the 

heavy-heavy tetraquark sector. In our previous studies [39-

43], the well-known Cornell Potential has been employed 

and several tetraquarks have been calculated. In this work, 

we have used a similar approach but with modifications in 
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confinement potential. The acquired masses have been 

compared with two meson thresholds. The paper is 

organized as follows: after a brief introduction in Section 1, 

Section 2 describes the diquark-antidiquark formalism and 

the mass spectra generated by this formalism for 

charmonium mesons and all charm tetraquarks. Section 3 

summarizes the results and a discussion, and Section 4 

discusses the study’s prospects for future research. 

Experimental  

High energy potential phenomenology has inspired various 

potential models that compute constituent quark interaction 

in a non-relativistic framework. Typically, these quark 

interactions are determined using Lattice QCD and the QCD 

Sum Rule. Given that the kinetic energy of the constituent 

quarks of an all heavy tetraquark is reasonably small in 

comparison to their rest mass energy, a non-relativistic 

model in a static potential approach appears to be fairly 

advantageous [44]. The binding energy of each state is 

computed using the presented method by solving the time-

independent radial Schrodinger wave equation [45] of the 

relevant state given by, 

[
−1

2𝜇
(

d2

dr2
+

2

r

d

dr
−

L(L + 1)2

r
) + V(r)]  𝜓(𝑟) =  𝐸𝜓(𝑟), 

                                           (1) 

where, the orbital Quantum Number and eigenvalue of 

energy are denoted by L and E respectively. For a quark-

antiquark interaction, the simplified Hamiltonian equation 

can be given by 

 𝐻 ψ(r) + 𝐸ψ(𝑟)   →   (𝑇 + 𝑉(𝑟))ψ = 𝐸ψ(𝑟), 

                                             (2) 

where constituent kinetic energy and interaction potential 

are given by T and V(r) receptively. In a two body, center 

of mass frame, the fundamental Hamiltonian for tetra quarks 

and mesons with constituent mass Mi, relative momentum 

of the system pi and interaction potential V(r) is given by, 

 𝐻 = ∑ (𝑀𝑖 +
𝑝𝑖

2𝑀𝑖

)

2

𝑖=1

+ 𝑉(𝑟). 

                                                    (3) 

The potential employed in this study is made up of 

coulombic potential and quadratic potential terms. The 

coulumbic component is caused by the Lorentz vector 

exchange, which is essentially one gluon exchange in this 

case; the quadractic word explains the confinement 

associated with the Lorentz scalar exchange. 

Because the confinement component is quadratic, the 

potential energy grows quadratically with the distance 

between the quarks. The potential energy grows unbound as 

the separation between quarks increases. This forbids 

quarks from being separated or detected as free particles, 

but instead confines them within hadrons, generating color-

neutral bound states. The quadratic confinement potential is 

comparable to the harmonic oscillator potential, although 

the exact nature of the confinement process in Quantum 

Chromodynamics is still unknown. The zeroth order 

potential in coulombic plus quadratic term is given by, 

𝑉𝐶+𝑄
(0) (𝑟) =

𝑘𝑠α𝑠

𝑟
+ 𝑏𝑟2 

                                                              (4) 

where the QCD running coupling constant, color factor and 

string tension are given by αs , ks and b respectively. In order 

to incorporate relativistic mass correction, term V1(r) is 

included which was originally established by Y. Koma et al. 

[46] in the central potential model. The leading-order 

perturbation theory yields the relativistic mass correction 

term V1(r) given as, 

𝑉1(𝑟) = −
𝐶𝐹𝐶𝐴

4

α𝑠
2

𝑟2
, 

                                                                   (5) 

where the Casimir charges of fundamental and adjoint 

representation are given by CF and CA respectively [46]. 

Spin dependent interaction is critical for understanding the 

splitting of radial and orbital excitations of mesons and 

tetraquarks for different quantum numbers. One gluon 

exchange is integrated utilizing the Briet Fermi Hamiltonian 

in the first order perturbation theory [47]. This integration 

is done by adding the matrix components as an energy 

correction for spin-dependent interactions, given by, 

𝑉𝑆𝐷(𝑟) = 𝑉𝑆𝑆(𝑟) + 𝑉𝐿𝑆(𝑟) + 𝑉𝑇(𝑟). 

                                                    (6) 

The spin-orbit term VLS and the tensor term VT describe the 

fine structure of any given state [48]. At the same time, the 

spin-spin interaction term VSS, which is proportional to 2S1· 

S2, describes the hyperfine splitting [48]. These spin-

dependent terms are defined as, 

𝑉𝑆𝑆 = [−
8𝜋𝑘𝑠𝛼𝑠

3𝑀𝒟𝑀�̅�

(
𝜎

√𝜋
)

3

𝑒−𝜎2𝑟2
] (𝑆1 ∙ 𝑆2) 

,                                                (7) 
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1
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3
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                                                (9) 

where 𝑀𝒟 and 𝑀�̅� are the masses of constituents, namely 

quarks and antiquarks for mesons and diquarks and 

antidiquarks for tetraquarks. For the investigation of heavy 



Original Article Lodha et al: All Charm Tetraquark Spectra in Coulombic Plus Quadratic Potential 

 

Journal of Condensed Matter. 2023. Vol. 01. No. 02        107 

quarkonium spectroscopy, σ parameter is substituted for the 

Delta function in the Briet Fermi Hamiltonian. For spin-1 

diquarks and spin-1 antidiquarks, all the spin-dependent 

terms are computed, which combine to form the color 

singlet tetra quark with spin S = 0, 1 and 2. Coupling total 

spin ST with total orbital angular momentum LT results in 

total angular momentum JT. This coupling is used to obtain 

the mass spectra of radial and orbital excitations. JPC values 

are calculated using P𝑇  =  (−1)𝐿𝑇  and C𝑇 = (−1)𝐿𝑇+𝑆𝑇  

Results 

1. Charmonium spectroscopy 

The masses of diquarks and tetraquarks are calculated using 

the parameters obtained by J/ψ meson spectra. Since SU(3) 

color symmetry allows only colorless quark combination, 

|𝑄�̅�⟩ will exhibit |𝑄�̅�⟩: 𝟑 ⊗  �̅�  = 𝟏 ⊕  𝟖 representation 

for mesons, which carries a color factor of ks = −
4

3
 [49]. The 

masses of 𝑐𝑐̅ states are obtained by, 

𝑀(𝑐𝑐̅) = 𝑀𝑐 + 𝑀𝑐̅ + 𝐸(𝑐𝑐)̅ + 〈𝑉1(𝑟)〉 

                                            (10) 

Inspired by previous studies, all parameters in this 

methodology are fixed by considering the mass spectra of 

mesons. Our present work utilizes four parameters 

(m,αs,b,σ) for tetraquark states model mass provided in the 

Table 1. Using this dataset, the mass spectra of charmonium 

and all charm tetraquark is obtained. Table 2 is the 

tabulation of the final mass spectra of 𝑐𝑐̅. 

Table 1: Parameters for calculating 𝑐𝑐̅ Meson and 𝑐𝑐𝑐�̅�  Tetraquark mass spectra. 

αs b(GeV2) σ(GeV) mc(GeV) State 

0.425 0.045 0.475 1.45 𝑐𝑐̅ 𝑎𝑛𝑑 𝑐𝑐𝑐�̅� 

Table 2: Mass spectra of 𝑐𝑐̅ Meson with various quantum number (MeV). 

State JPC ⟨V1(r)⟩ Mass PDG [20] [43] Meson 

0S1 0− + -4.85 2982.27 2983.90 2983 ηc(1S) 

3S1 1− − -4.97 3004.73 3096.90 3075 J/ψ(1S) 
1P1 1+ − -4.10 3515.69 3525.37 3502 hc(1P) 
3P0 0+ + -3.67 3411.65 3414.71 3410 χc0(1P) 
3P1 1+ + -4.01 3527.35 3510.67 3492 χc1(1P) 
3P2 2+ + -4.10 3559.22 3556.17 3543 χc2(1P) 

2. All charm tetraquark spectroscopy 

A pair of anti(quarks) interacting with each other via 

gluonic exchange forms a bound state, more commonly 

known as anti(diquark). Using the ground state 

diquarks(11S0) [cc], compact diquarks are calculated. Using 

the same methodology to calculate the mass of a meson, a 

(anti)diquark mass is calculated. For (anti)diquark the color 

factor ks due to QCD color symmetry in the antitriplet state 

is −
2

3
 which makes the short-distance interaction attractive 

[49]. Since it reduces a four-body problem into a two-body 

problem, the diquark-antidiquark approximation becomes 

central to this method. A diquark antidiquark pair held 

together by color forces constitutes a color singlet 

tetraquark. An all charm tetraquark 𝑇𝑐𝑐𝑐𝑐̅̅ ̅ in color singlet 

state has a color factor ks = − . The color singlet tetraquark 

can be represented as |𝑄𝑄|3 ⊗  |𝑄𝑄̅̅ ̅̅ |3̅⟩ [49]. Using the 

same formulation as in the case of the meson, tetraquark 

masses for many states are calculated, by namely; 

𝑀(𝑐𝑐𝑐c̅̅ ̅) = 𝑀𝑐𝑐 + 𝑀𝑐𝑐̅̅ ̅ + 𝐸(𝑐𝑐𝑐𝑐̅̅ ̅) + 〈𝑉1(𝑟)〉.                    (11) 

Discussion 

The Utilizing the zeroth order potential in form of 

coulombic plus quadratic term with relativistic mass 

correction, the mass spectra of charmonium and all charm 

tetraquark have been generated in the present work, as 

shown in table 2 and 3. The obtained results are compared 

with the masses mentioned in Particle Data Group (PDG) 

[20] for the experimentally observed 𝑐𝑐̅ meson. Comparison 

with Cornell Potential model is also done and our masses 

show close proximity with other model as well as the 

experimentally observed masses. The S wave scalar meson 

and P wave scalar and Tensor meson are within 5 MeV mass 

difference from the observed mass [20], whereas vector 

meson in P wave and S wave are also very close to the 

experimentally observed states. 

The masses for the all charm tetraquark are compared with 

other theoretical models [43] as well as with the two-meson 

threshold. The ground state tetraquark is only a few MeV 

below the two-meson threshold while other states also do 

not diverge far from the threshold. The calculated masses 
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show comparable result with other models and will help 

providing useful information for future experimental as well 

as theoretical studies of tetraquarks and other exotic 

hadrons. We would like to use Regge phenomology for the 

determination of mass spectra of tetraquarks as it has 

already shown promising results in meson and baryon sector 

[50-54]. 

Table 3: Mass spectra of 𝑐𝑐𝑐�̅� Tetraquark with various quantum number (MeV). 

State JPC ⟨V1(r)⟩ Mass [43] MTh Threshold 

0S1 0+ + -4.17 5955.77 5939 5967.80 ηc(1S) ηc(1S) 

3S1 1+ − -4.04 5962.04 5986 6080 ηc(1S) J/ψ(1S) 

5S2 2+ + -4.23 5975.17 6079 6193.8 J/ψ(1S) J/ψ(1S) 

1P1 1− − -2.89 6448.33 6553 - - 

3P0 0− + -2.97 6351.04 6460 6398.61 ηc(1S) χc0(1P) 

3P1 1− + -2.89 6443.17 6554 6494.57 ηc(1S) χc1(1P) 

3P2 2− + -2.97 6478.17 6587 6540.07 ηc(1S) χc2(1P) 

5P1 0− − -2.89 6341.19 6459 6509.27 ηc(1S) hc(1P) 

5P2 1− − -2.97 6459.23 6577 6607.57 J/ψ(1S) χc1(1P) 

5P3 3− − -2.88 6511.62 6623 6653.07 J/ψ(1S) χc2(1P) 

Conclusion  

In the current work, we present the spectroscopic mass 

spectra of charmonium meson and all charm tetraquark in 

coulombic plus quadratic potential with relativistic mass 

correction. When compared with PDG masses for 

charmonium and two meson thresholds for tetraquark, the 

mass spectra show agreeable results. The decay properties 

and tetraquark mass spectra with multiple flavored quarks 

will be generated in our future work. 
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