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Abstract 

The Transition energy of an electron for a polar quantum disc with conical disclination is investigated theoretically. For charge 

carrier confinement, we consider the infinite polar square well potential (IPSW), and parabolic potential (PP). The disclination 

in the system is characterized by the kink parameter κ. The energy levels of the system were calculated using the Schrödinger 

equation with the effective mass approximation. Our study reveals that the transition energy decreases as the kink parameter 

κ increases. 
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Introduction 

Over the past few decades, progress in nanotechnology and 

microfabrication methods has exposed a wide expanse of 

opportunities in the realm of low-dimensional systems [1- 

2]. Low-dimensional systems exhibit quantum effects due 

to the restricted motion of their particles in a small region 

of space. These quantum effects are crucial for the design of 

nanodevices [3]. The confinement of particle motion in one, 

two-, and three-dimensions results in the formation of 

quantum wells, quantum wires, and quantum dots, 

respectively [4]. Quantum dots serve as miniature 

laboratories for conducting thorough tests of the predictions 

made by quantum mechanics [5]. Accurately describing a 

quantum dot relies on the precise form of the electric 

confinement potential. It is widely recognized that the 

harmonic potential serves as a suitable approximation, 

effectively capturing the fundamental traits of the quantum 

dot [6-7].  Advances in microfabrication techniques have 

made it possible to create quantum dots with a variety of 

geometries, such as spheres, cylinders, discs and so forth 

[8]. 

The behaviour of the system can be strongly influenced by 

topological defects, such as disclinations [9-10]. 

Topological defects are the defects in the system that cannot 

be removed by smooth continuous deformation [11]. 

Topological defects can be a source of variation in the 

electrical, acoustic, or thermal properties of material [12]. 

Disclination in a system can be best visualized by the 

Volterra construction [6], as shown in figure 1, in which a 

sector is removed from the disc or a segment is added into 

the polar disc. 

 

Figure 1: Volterra Construction for the polar quantum disc in 

which a sector is removed from a disc [6]. 

Theoretical Formulation  

Wavefunctions  

The system under investigation is a polar quantum disc of 

radius R and height h with a conical disclination. The 

disclination in the system is characterized by the kink 

parameter κ, where a value of κ less than 1 signifies the 

removal of a segment from the disc, and a value of κ greater 

than 1 represents the addition of a segment to the polar disc. 

When the kink parameter κ value is one implies that there is 
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no disclination present in the system. Conical disclination 

modifies the metric of a disc from its otherwise Euclidean 

form as given below: 

  d𝑠2  =  d𝑟2  +  𝑟2d𝜑2  +  d𝑧2      φ ϵ [0, 2πκ]         …(1) 

Coordinate transformation is used to make the metric simple 

for theoretical calculation as given below [6]. 

        ρ =  κr, ϕ =
𝜑

𝜅
,       ϕ ∈  [0, 2π]               …(2) 

the simplified metric has the form 

d𝑠2 = 𝜅−2d𝜌2 + 𝜌2d𝜙2  +  d𝑧2,        ϕ ϵ [0,2π]         …(3) 

The parabolic potential for the polar disc is defined as: 

  V (ρ, κ) =  {
1

2 κ2 μω0𝑝ρ2    ;     ρ <  κR   

           ∞         ;     ρ >  κR           
              …(4) 

The potential in the axial direction is 

V (z) =  {
    0      ;     ρ < h   

∞   ;      ρ > h
                                        …(5) 

where, μ represents the electron’s effective mass, while ω0p 

corresponds to the angular frequencies linked with the 

classical harmonic oscillator for the parabolic potential. In 

the context of the effective-mass approximation, the 

Schrödinger equation takes on the following form [13]- 

1

2𝜇
(𝑝)2 𝜓(𝜌, 𝑧, 𝜙) + 𝑉(𝜌) 𝜓(𝜌, 𝑧, 𝜙) = 𝐸𝑇 𝜓(𝜌, 𝑧, 𝜙) 

…(6) 

where 𝑝 ⃗⃗⃗ ⃗= −iħ∇⃗⃗⃗ is the quantum mechanical momentum 

operator with ħ = h/2π, in which h is Planck’s constant, i = 

√(−1), and ET is the total energy of the electron. For a single 

electron system in a polar quantum disc with an electric 

confining potential V(ρ), the wave function can be 

expressed as: 

ψ(ρ, z, ϕ) = 𝐶𝑚𝑙𝜒𝑚𝑙(ρ)sin (
nπz

h
)𝑒𝑖𝑚𝜙                   …(7) 

where, Cml is the normalization constant, and m and l 

represent the azimuthal and radial quantum numbers, 

respectively. The total radial wave function of the electron 

χml (ρ), which assumes different forms depending on the 

radial electric potential V (ρ) being considered, satisfies the 

second-order differential equation 

κ2

𝜌

𝑑

𝑑𝜌
(𝜌

𝑑

𝑑𝜌
𝜒(𝜌)) + {

2𝜇

ħ2
[𝐸𝑚𝑙 − 𝑉(𝜌)] −

𝑚2

𝜌2 } 𝜒(𝜌) = 0      …(8) 

Parabolic potential (PP) 

The radial part of the wavefunction of a particle in a 

parabolic potential can be expressed as a linear combination 

of two special functions, the Whittaker M and W functions. 

𝜒(𝜌) =
𝐶1

𝜌
𝑀𝜎,𝑣 (ζ) + 

𝐶2

𝜌
𝑊𝜎,𝑣 (ζ)                                     …(9) 

where   σ = 
E𝑚𝑙

2 ħω0𝑝
,                                                     …(10) 

𝑣 =
|𝑚|

2 κ
                                                                         …(11) 

  ζ  =
𝜇 𝜔0𝑝

 ħ κ2 𝜌2                                          …(12) 

C1 and C2 are constants. In Eqn. (9), the Whittaker W 

function has to be discarded due to its divergent nature at 

the origin (ρ = 0), therefore C2 = 0, leaving the radial 

component of the wave function as 

𝜒(𝜌) =
𝐶1

𝜌
𝑀𝜎,𝑣 (ζ)                                                       …(13) 

Requiring the vanishing of the wave function at the wall 

boundary (ρ = κR) and at the ends of the polar disc       leads 

to the following expression for the energy eigenvalues 

𝐸𝑇 = 𝐸𝑚𝑙 + 𝐸𝑧 = 2 ̄ħ𝜔0p𝜎𝑅  +  
𝑛2 ħ2𝜋2

2 𝜇 ℎ2                   …(14) 

in which σR is the value of σ that satisfies the boundary 

condition Mσ,ν (ζR) = 0, with ζR = ζ (ρ = κR) and Ez is simply 

the energy of a particle in a one dimensional box. 

Infinite polar square well (IPSW) 

The radial part of the wavefunction of a particle in an 

infinite square well potential can be expressed as a linear 

combination of BesselJ and BesselY functions as given 

below: 

χ(ρ) = C3 BesselJ(
𝑚

𝜅
,
𝜂𝜌

κ 
) + C4 BesselY(

𝑚

𝜅
,
𝜂𝜌

κ 
)              … (15) 

 

where 

𝜂2 =
2μ  𝐸𝑚𝑙  

 ℏ2                                                                                     …(16) 

 

The second term in Eqn. (15) diverges at ρ = 0, so C4 is set 

to be zero. The energy eigenvalue for the infinite square 

potential well is given by the following expression: 

 

                                  ET =  
ℏ2 𝜂𝑅

2    

2 𝜇
 +  

𝑛2 ħ2𝜋2

2 𝜇 ℎ2  

 

The boundary condition BesselJ( 
𝑚

𝜅
 , 

𝜂𝜌

κ 
) = 0 satisfied by the 

η represented by ηR. 

Results and Discussion 

Electrons in solids have an effective mass that is different 

from their mass in a vacuum. In our calculations we have 

taken the effective mass of electron μ = 0.067 me, the radius 

of disc R = 400 Å and the height of the disc h = 200Å. Figure 

2 and 3 show the variation of total transition energy with 

kink parameter for a polar quantum disc having electric 

confining parabolic and infinite square well potential 

respectively. The higher the value of the kink parameter, the 

lower the transition energy becomes. As mentioned before, 

a kink parameter value less than 1 indicates a deficit angle, 

while a value greater than 1 indicates an additional angle 

introduced to the polar disc. When the kink parameter κ is 

less than 1, the confinement of electrons is stronger because 

they have less space to move. As κ increases, the space for 
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electron movement also increases, making confinement 

weaker. As a result, confinement energy decreases with 

increasing kink parameter κ. Also, we noticed that the 

transition energy of the electron in the case of parabolic 

potential is higher than that of the infinite square well.  

 

Figure 2: Variation of transition energy (m = 0 → m = 1) with kink 

parameter κ for parabolic potential 

 

Figure 3: Variation of transition energy (m = 0 → m = 1) with kink 

parameter κ for infinite square well potential. 

Conclusion  

A theoretical study is made to calculate the transition energy 

for a polar quantum disc with conical disclination in electric 

confining parabolic and infinite square well potential. 

Results show that transition energy can be modulated via 

electric confining potential and kink parameters. These 

findings are crucial for the design of nanodevices. 
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