Synthesis and Photoluminescence in Garnet-type CaLa₂Al₄SiO₁₂:Dy³⁺ Phosphor for Optical Applications

Ganesh C. Vandile^{1,a}, Deoram V. Nandanwar^{1,b}, Amar K. Nandanwar², Shruti P. Dhale³, Bhupendra P. Walde¹, Shruti M. Hargude¹, Nilesh S. Ugemuge³

Department of Physics, Shri Mathuradas Mohota College of Science, Nagpur-440009, India.
 Department of Physics, J. M. Patel Arts, Commerce & Science College, Bhandara-441904, India.
 IHLR & SS, Department of Physics Anand Niketan College of Science, Arts and Commerce Warora, Dist-Chandrapur, 442914. India.

^a ganesh9326wandile@gmail.com ^b dvnandanwar@gmail.com

Abstract

The series of xDy^{3+} doped $CaLa_2Al_4SiO_{12}$ garnet-structured phosphors were synthesized by conventional combustion method. The prepared materials were studied using various techniques such as x-ray powder diffraction for crystal structure and phase, photoluminescence for optical properties, scanning electron microscopy (SEM) for morphological studies, and energy dispersive spectroscopy analyses for the existence of elements in the prepared materials. The excitation and emission of the prepared garnet-type phosphor were recorded at 351 nm in the transition from $^6H_{15/2} \rightarrow ^6P_{7/2}$ and 584 nm in the transition from $^4F_{9/2} \rightarrow ^6H_{13/2}$. The concentration quenching obtained at 7.0 mol.% of dysprosium ions. This phosphor has potential application in w-LED and other optical devices.

Keywords: Photoluminescence; CaLa₂Al₄SiO₁₂; Garnet; Dysprosium. Received 22 March 2025; First Review 17 April 2025; Accepted 18 April 2025.

* Address of correspondence

Ganesh C. Vandile

Department of Physics, Shri Mathuradas Mohota College of Science, Nagpur-440009, India.

Email: ganesh9326wandile@gmail.com

How to cite this article

Ganesh C. Vandile, Deoram V. Nandanwar, Amar K. Nandanwar, Shruti P. Dhale, Bhupendra P. Walde, Shruti M. Hargude, Nilesh S. Ugemuge, Synthesis and Photoluminescence in Garnet-type CaLa₂Al₄SiO₁₂:Dy³⁺ Phosphor for Optical Applications, J. Cond. Matt. 2025; 03 (02): 133-136.

Available from:

https://doi.org/10.61343/jcm.v3i02.152

Introduction

Efficient lighting devices based on the light emitting diode have attracted great attention in recent time. The solid-state lighting devices are considered as the energy saving light emitting devices than incandescent bulbs [1]. In order to increase the colour stability and life time, the garnet-type phosphor is used in white light emitting devices (w-LEDs) [2]. The luminescence immunoassays is an example of the many uses for garnet-structure phosphor, which are used in a variety of industries, including clinical studies, environmental surveillance, food hygiene, pharmaceutical testing [3]. The garnet-type phosphors are mostly used in the industry related to optoelectronics [4]. We mostly used various kinds of highly efficient lighting devices now days because of their luminescence efficiency. Among them, phosphor converted light emitting diodes are used [5]. In order to increase quantum yield and luminous intensity, we are choosing garnet-type phosphor. Dy³⁺ doped garnet phosphor uses in the fields of lighting devices as w-LEDs.

The trivalent dysprosium ions are the best dopant with emission in blue and yellow regions [6]. The ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ and ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ transitions cause blue and yellow emissions respectively to appear when dysprosium trivalent ions are doped with phosphor [7]. By doping dysprosium trivalent ions (Dy³+) in a suitable phosphor for the proper and pure white lighting devices should be obtained by improving the yellow-blue intensities [8]. As the garnet silicate phosphor host are favourable due to their thermal and chemical equilibrium stabilities [9].

Haipeng *et al.* have prepared garnet-silicate phosphor like BaY₂Al₄SiO₁₂, SrY₂Al₄SiO₁₂, CaY₂Al₄SiO₁₂ and MgY₂Al₄SiO₁₂ by solid state reaction synthesis method [10]. In our earlier work we have synthesized LiCa₃MgV₃O₁₂:Nd³⁺/Yb³⁺ [12], LiCa₃MgV₃O₁₂ activated with Er³⁺[11] and LiCa₃ZnV₃O₁₂:Nd³⁺[13]. The garnet type phosphor CLASG has high chemical and thermal stability. The emission spectrum was obtained about greenish yellow

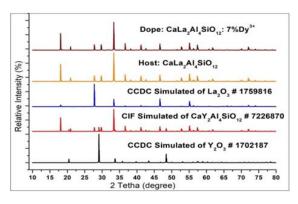
in visible region while irradiating the material by UV or near-UV radiation [14].

In this paper, we have studied the novel garnet-structured CaLa₂Al₄SiO₁₂:Dy³⁺ phosphor first time. The major applications of this phosphor are optoelectronic devices as solid-state lighting and illumination [15].

Experimental

Materials and synthesis

Pristine CaLa₂Al₄SiO₁₂ and CaLa₂Al₄SiO₁₂:xDy³⁺ prepared by using simple combustion method. Calcium Nitrate (Ca(NO₃)₂, MERCK), Aluminium Nitrate (Al(NO₃)₃, MERCK), Silicon Oxide (SiO₂, MERCK), Lanthanum Oxide (La₂O₃, MERCK), and Dysprosium Oxide (Dy₂O₃, MERCK) mixed with Urea & Glycine as fuel in stoichiometric ratio. We used glycine as fuel for lanthanum oxide and dysprosium oxide and urea as fuel for rest of the nitrates [16].


Characterization

Excitation and emission spectra were recorded employing a fluorescence spectrophotometer (Hitachi Make F-7100). The phase was determined using the X-ray powder diffraction technique (Rigaku Miniflex, Cu-K α wavelength 0.154059 nm). The surface study and compositional details were optimized using a FE-SEM JEOL, JSM-6500F.

Results and Discussion

X-Ray Diffraction

Figure 1(a) represent XRD pattern and Figure 1(b) refined XRD pattern of garnet-type phosphor.

Figure 1: (a) The representation of XRD pattern of CaLa₂Al₄SiO₁₂, the comparison of XRD patterns of prepared undoped and doped garnet materials with CIF simulated file #7226870, #1702157 for Y₂O₃ and #1759816 for La₂O₃.

All XRD peaks were indexed to cubic structure having space group Ia-3d. As the novel phosphor CaLa₂Al₄SiO₁₂ the conformation of the crystallographic structure were possible by matching the standard XRD pattern of

 $CaY_2Al_4SiO_{12}$, La_2O_3 and Y_2O_3 with standard CIF #7226870, CCDC #1759816 and CCDC #1702187. The details of the structural parameters and Wyckoff symbols are shown in Table 1. The lattice parameters (a = b = c=12.00062 A°) with relative error 0.09 % with calculated value [17]. Figure 1(a) shows that there was no effect due to doping in the garnet-structure phosphor.

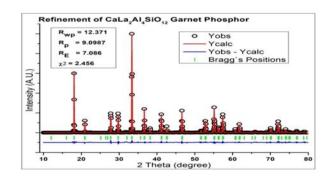
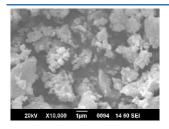


Figure 1: (b) The representation of refined XRD pattern of CaLa₂Al₄SiO₁₂.

Table 1: Details of phase identification of XRD data with Rietveld refinement.


Compound		CaLa ₂ Al ₄ SiO ₁₂	
Crystal structure type		Cubic structure	
Space group		Ia-3d (230)	
Translational Lattice -parameters $(a = b = c)$ in Å		12.00062 Å	
Volume of unit cell (nm) ³		1728.27 Å ³	
Chi ²		3.425	
Rp		9.0987	
Rwp		12.371	
Expected R _w		7.086	
Wyckoff symbols			
Ions	Symbols		Occupancy
Ca ²⁺	24c		1/3
La ³⁺	24c		2/3
Al^{3+}	16a		1
Al1 ³⁺	24d		2/3
Si ⁴⁺	24d		1/3
O (for Ia-3d)	96h		1

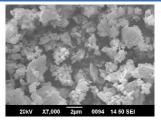

Morphology and EDX

Figure 2 depicts FESEM images of the materials with different magnification. This technique is useful to investigate the grain size and surface study. To examine elemental composition of the material, it's characterized by EDX technique. Figure 3 show all elements are present with desired composition. The energy dispersive peaks are shown the host materials Ca, La, Al, Si and O as well as dopant Dy³⁺ ions.

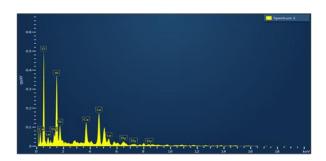

Photoluminescence

Figure 4 (a) shows excitation spectrum of $CaLa_2Al_4SiO_{12}$:0.07Dy³⁺. The excitation spectrum is obtained at the wavelength of 351 nm with emission wavelength 584 nm.

Figure 2: SEM images of as-prepared garnet phosphor CaLa₂Al₄SiO₁₂:Dy³⁺.

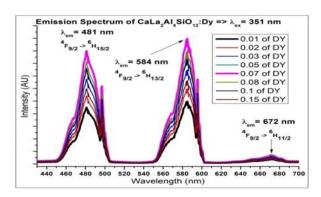


Figure 3: Energy Dispersive X-ray Spectrum of CaLa₂Al₄SiO₁₂:Dy³⁺.

Figure 4 (a): Excitation spectrum of garnet-type phosphor CaLa₂Al₄SiO₁₂:Dy³⁺ is observed at 584 nm.

The electronic transition for the excitation is observed from $^6H_{15/2} \rightarrow ^6P_{7/2}$. There was serval peaks obtained at wavelengths 333, 335, 341, 346, 351, 356, 363 and 375 nm.

Figure 4 (b): Emission spectrum of garnet-type phosphor $CaLa_2Al_4SiO_{12}:xDy^{3+}$ ($x=0.01,\,0.02,\,0.03,\,0.05,\,0.07,\,0.08,\,0.10,\,0.15$) is excited by 351 nm.

Figure 4 (b) depicts the emission spectrum of the garnettype phosphor. The PL profile and position of the peaks does not change during the exciting at 351 nm [19]. The prepared material is useful for near UV, green and yellow LEDs.

Conclusion

Using conventional combustion reaction, a series of single phase Dy^{3+} -doped $CaLa_2Al_4SiO_{12}$ garnet phosphors were prepared. The single-phase crystallography was examined by XRD result. The most intense peak was obtained at 584 for $CaLa_2Al_4SiO_{12}:7\%Dy^{3+}$ in transition from $^4F_{9/2} \rightarrow ^6H_{13/2}$. By FESEM and EDX, the materials were characterized surface study and chemical composition investigation respectively. The prepared materials were suitable in yellow colour lighting devices and w-LEDs.

References

- 1. Höppe, H. A. (2009). *Recent developments in the field of inorganic phosphors*. Angewandte Chemie International Edition, 48(20), 3572-3582.
- Zhang, Q., Hu, Y., Ju, G., Zhang, S., & Xue, F. (2017). Photoluminescence of a novel Na 3Y(VO₄) 2:Eu³⁺ red phosphor for near ultraviolet light emitting diodes application. J. Materials Science: Materials in Electronics, 28, 2529-2537.
- 3. Welker, T. (1991). Recent developments on phosphors for fluorescent lamps and cathode-ray tubes. J. luminescence, 48, 49-56.
- 4. Yang, L., Chen, M., Lv, Z., Wang, S., Liu, X., & Liu, S. (2013). Preparation of a YAG: Ce phosphor glass by screen-printing technology and its application in LED packaging. Optics letters, 38(13), 2240-2243.
- 5. Liu, H., Liao, L., Molokeev, M. S., Guo, Q., Zhang, Y., & Mei, L. (2016). *A novel single-phase white light emitting phosphor Ca₉La(PO₄)₅(SiO₄)F₂:Dy³⁺: synthesis*, crystal structure and luminescence properties. RSC Advances, 6(29), 24577-24583.
- Shashikala, B. S., Premkumar, H. B., Darshan, G. P., Nagabhushana, H., Sharma, S. C., & Prashantha, S. C. (2019). Rational design of bi-functional RE³⁺ (RE= Tb, Ce) and alkali metals (M⁺ = Li, Na, K) codoped CaAl₂O₄ nanophosphors for solid state lighting and advanced forensic applications. Materials Research Bulletin, 115, 88-97.
- Dhale, Shruti, Nilesh Ugemuge, Vartika S. Singh, S. R. Dhakate, Aniket Bharti, Rajesh Kumar, and S. V. Moharil, "Study of Luminescence Behavior in Dy³⁺-Activated Ba₃Ca₂(PO4)₃F", J. Electronic Materials (2024): 1-11.
- 8. Lin, L., Zhonghua, Z. H. A. O., Zhang, W., Zheng, Z., & Min, Y. I. N. (2009). *Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca₂MgSi₂O₇: Dy³⁺. J. Rare Earths, 27(5), 749-752.*
- 9. Ji, H., Wang, L., Cho, Y., Hirosaki, N., Molokeev,

- M. S., Xia, Z., & Xie, R. J. (2016). New Y_2BaAl_4 SiO₁₂:Ce³⁺ yellow microcrystal-glass powder phosphor with high thermal emission stability. J. Materials Chemistry C, 4(41), 9872-9878.
- Warutkar, G. N., Ugemuge, N. S., Pusdekar, A., Dhale, S., Sharma, K., Sankapal, B. R., ... & Moharil, S. V. (2025). Near infrared emission in garnet structured LiCa₃MgV₃O₁₂:Nd³⁺/Yb³⁺ phosphor. Optik, 322, 172180.
- Warutkar, G., Ugemuge, N., Dhale, S., Tumram, P. V., Tawalare, P. K., Nafdey, R., & Moharil, S. V. (2024). Host sensitized mid-infrared emission in LiCa₃MgV₃O₁₂ activated with Er³⁺. Emergent Materials, 1-7.
- Warutkar, G. N., Ugemuge, N. S., Sharma, K., Nafdey, R., & Moharil, S. V. (2023). Nd³⁺ emission in the garnet structure of LiCa₃ZnV₃O₁₂ phosphor. Radiation Effects and Defects in Solids, 178(11-12), 1479-1489.
- 13. Ji, H., Huang, Z., Xia, Z., Molokeev, M. S., Atuchin, V. V., Fang, M., & Liu, Y. (2015). Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M₃(PO₄)₂:Eu²⁺ (M= Ca/Sr/Ba) quasi-binary sets. J. Physical Chemistry C, 119(4), 2038-2045.
- Djamal, M., Yuliantini, L., Hidayat, R., Boonin, K., Yasaka, P., & Kaewkhao, J. (2018). Glass medium doped rare earth for sensor material. Materials Today: Proceedings, 5(7), 15126-15130.
- Gotoh, T., Jeem, M., Zhang, L., Okinaka, N., & Watanabe, S. (2020). Synthesis of yellow persistent phosphor garnet by mixed fuel solution combustion synthesis and its characteristic. J. Physics and Chemistry of Solids, 142, 109436.
- 16. Shikao, S., & Jiye, W. (2001). Combustion synthesis of Eu^{3+} activated $Y_3Al_5O_{12}$ phosphor nanoparticles. J. alloys and compounds, 327(1-2), 82-86.
- 17. Ji, H., Wang, L., Cho, Y., Hirosaki, N., Molokeev, M. S., Xia, Z., ... & Xie, R. J. (2016). New Y₂BaAl ⁴SiO₁₂:Ce³⁺ yellow microcrystal-glass powder phosphor with high thermal emission stability. J. Materials Chemistry C, 4(41), 9872-9878.
- 18. Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). *Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr*³⁺, *Nd*³⁺, *Pm*³⁺, *Sm*³⁺, *Dy*³⁺, *Ho*³⁺, *Er*³⁺, *and Tm*³⁺. J. chem. Phy., 49(10), 4424-4442.
- Yu, Z., Ye, Z., Yang, Y., & Sun, J. (2023). Bright white electroluminescence from polycrystalline dysprosium-doped yttrium gallium garnet nanofilms fabricated by atomic layer deposition on silicon. Nanoscale, 15(20), 9130-9138.
- McCamy, C. S. (1992). Correlated colour temperature as an explicit function of chromaticity coordinates. Color Research & Appl., 17(2), 142-144.